Air Quality Analysis Supporting Documentation

The Proposed Action is to recapitalize the T-38C Talon flight training program at Laughlin Air Force Base (AFB), Texas, with T-7A Red Hawk aircraft. For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft and phasing in the T-7A aircraft. Alternative 2 also would result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a potential scenario in which DAF requires a surge or increase in pilot training operations above current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft to cover a potential scenario in which another military installation is unable to accept delivery of all their T-7A aircraft and some of those aircraft need to be reassigned to Laughlin AFB. T-7A operations for Alternative 3 would be performed at an intensity identical to Alternative 2. Alternative 3 also incorporates a Military Construction (MILCON) project alternative to construct 12 additional shelters for the T-7A aircraft. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The Proposed Action and alternatives include phasing in T-7A aircraft and phasing out T-38C aircraft at Laughlin AFB; conducting aircraft operations at Laughlin AFB and within Laughlin 1, Laughlin 2, and Laughlin 3 Military Operating Areas (MOAs), and Military Training Routes (MTRs) IR-169, IR-170, VR-143, VR-165, VR-168, and VR-187; phasing in T-7A personnel and phasing out T-38C personnel at Laughlin AFB; and construction of six MILCON projects and seven facilities sustainment, restoration, and modernization (FSRM) projects at Laughlin AFB.

The Air Conformity Applicability Model (ACAM) version 5.0.18a was used to perform an analysis to assess the potential air quality impacts associated with the Proposed Action and alternatives in accordance with Air Force Manual 32-7002, *Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process* (EIAP, 32 Code of Federal Regulations [CFR] Part 989) and the General Conformity Rule (40 CFR Part 93, Subpart B). This document provides the ACAM results.

For this air quality impact assessment, the Region of Influence (ROI) is a three-dimensional vertical column air air up to 3,000 feet above ground level (AGL) (or the mixing zone) where pollutant emissions associated with the Proposed Action would occur. Low-altitude (i.e., below 3,000 feet AGL) were included in the air quality impact assessment. For the Proposed Action, no aircraft operations below 3,000 feet AGL would occur within Laughlin 1, Laughlin 2, or Laughlin 3 MOAs; therefore, these areas were not considered a part of the air quality ROI. In addition, VR-143 and VR-168 would be seldom and irregularly used; therefore, these MTRs were not considered a part of the air quality ROI.

This document is presented in two sections corresponding to two separate air quality ROIs based on regulatory requirements and the physical spatial distribution of the emissions sources associated with the Proposed Action and alternatives. The two ROIs are as follows:

<u>ROI 1: Laughlin AFB</u> – includes all Laughlin AFB airfield operations and construction actions

Counties included:

Val Verde County, TX Kinney County, TX

ROI 2: MTRs – includes aircraft operations within IR-169, IR-170, VR-165, and VR-187

Counties included:

Brewster County, TX	Maverick County, TX	Upton County, TX
Crockett County, TX	Pecos County, TX	Uvalde County, TX
Dimmit County, TX	Reagan County, TX	Val Verde County, TX
Edwards County, TX	Schleicher County, TX	Webb County, TX
Irion County, TX	Sutton County, TX	Zavala County, TX
Kinney County, TX	Terrell County, TX	

Laughlin AFB is in Val Verde County, Texas. In addition to Val Verde County, Laughlin AFB airfield operations below 3,000 feet occur in Kinney County. Val Verde and Kinnney Counties have been designated as in attainment for all criteria pollutants. The table below outlines the attainment status and the *de minimis* threshold under the General Conformity Rule for the counties within ROIs 1 and 2 (i.e., counties containing Laughlin AFB and the MTRs).

County	Airspace	Attainment Status	<i>de minimis</i> Threshold
Brewster County, TX	VR-165, VR-187	Unclassifiable/Attainment	None
Crockett County, TX	VR-169	Unclassifiable/Attainment	None
Dimmit County, TX	IR-169, IR-170	Unclassifiable/Attainment	None
Edwards County, TX	IR-170	Unclassifiable/Attainment	None
Irion County, TX	IR-169	Unclassifiable/Attainment	None
Kinney County, TX	Laughlin AFB Airfield Operations, IR-170	Unclassifiable/Attainment	None
Maverick County, TX	IR-170	Unclassifiable/Attainment	None
Pecos County, TX	IR-169, VR-165, VR-187	Unclassifiable/Attainment	None
Reagan County, TX	IR-169	Unclassifiable/Attainment	None
Schleicher County, TX	IR-169	Unclassifiable/Attainment	None
Sutton County, TX	IR-169	Unclassifiable/Attainment	None
Terrell County, TX	IR-169, VR-165, VR-187	Unclassifiable/Attainment	None
Upton County, TX	IR-169	Unclassifiable/Attainment	None
Uvalde County, TX	IR-170, VR-168	Unclassifiable/Attainment	None
Val Verde County, TX	Laughlin AFB, IR-169, IR-170, VR-187	Unclassifiable/Attainment	None
Webb County, TX	IR-170	Unclassifiable/Attainment	None
Zavala County, TX	IR-170	Unclassifiable/Attainment	None

Sources: (1) 40 CFR § 93.153 (2) USEPA. 2022. Nonattainment/Maintenance Status for Each County by Year for All Criteria Pollutants: Texas. As of December 31, 2022. (3) USEPA. 2022. 2021 Air Quality Design Values. As of May 2022.

¹ VR-143 and VR-168 are seldom and irregularly used; therefore, they were not included in the air quality analysis and counties underlying VR-143 and VR-168 are not within the MTR ROI.

The emission factors presented in this report are imbedded within ACAM and come from the following DAF documents: (1) *Air Emissions Guide for Air Force Stationary Sources, Methods for Estimating Emissions of Air Pollutants for Stationary Sources at U.S. Air Force Installations,* Air Force Civil Engineer Center (June 2020), and (2) *Air Emissions Guide for Air Force Mobile Sources, Methods for Estimating Emissions of Air Pollutants for Pollutants for Mobile Sources at U.S. Air Force Installations,* Air Force Installations, Air Force Civil Engineering Emissions of *Air Pollutants for Mobile Sources at U.S. Air Force Installations,* Air Force Civil Engineering Center (June 2020). Additional data and methodology used to prepare the ACAM reports are below.

Time in Mode (TIM) Summary for T-7A and T-38C aircraft within the ROIs

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
Laughlin AFB T-7A TIMs Summ	nary				
LTO Flight	0.00	0.01	0.79	0.58	3.91
LTO Taxi	12.42	0.00	0.00	0.00	0.00
Total LTO	12.42	0.01	0.79	0.58	3.91
Closed Patterns	0.00	0.00	0.46	2.63	3.57
Laughlin AFB T-38C TIMs Sum	mary				
LTO Flight	0.00	0.25	0.55	0.58	3.89
LTO Taxi	16.51	0.00	0.00	0.00	0.00
Total LTO	16.51	0.25	0.55	0.58	3.89
Closed Patterns	0.00	0.00	0.42	2.66	3.59

Table 2. TIMs Summary for ROI 1: Laughlin AFB

Key: AB = afterburner; LTO = landing and takeoff cycle; mil = military; min = minutes

Table 3. TIMs Summary for ROI 2: MTRs (IR-169, IR-170, VR-165, and VR-187)

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
IR-169 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	22.76	0.00
IR-169 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	22.76	0.00
IR-170 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	24.69	0.00
IR-170 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	24.69	0.00
VR-165 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	14.79	0.00
VR-165 T-38C TIMs Summary					

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
Low Flight Pattern	0.00	0.00	0.00	14.79	0.00
VR-187 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	16.07	0.00
VR-187 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	16.07	0.00

Key: AB = afterburner; LTO = landing and takeoff cycle mil = military; min = minutes

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

ROI 1: Laughlin AFB

This section includes the following:

- Alternative 1 ACAM Report
- Alternative 1 ACAM Detail Report
- Alternative 2 ACAM Report
- Alternative 2 ACAM Detail Report
- Alternative 3 ACAM Report
- Alternative 3 ACAM Detail Report

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:LAUGHLIN AFBState:TexasCounty(s):Val VerdeRegulatory Area(s):NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 1

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2026

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

2020

2026					
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)		
NOT IN A REGULATORY	AREA				
VOC	5.466	250			
NOx	14.318	250			
СО	21.951	250			
SOx	0.049	250			
PM 10	14.076	250			
PM 2.5	0.539	250			
Pb	0.000	25	No		
NH3	0.015	250			
CO2e	4799.0				

Analysis Summary:

2027

2027					
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)		
NOT IN A REGULATORY	AREA				
VOC	1.962	250			
NOx	6.294	250			
СО	9.645	250			
SOx	0.021	250			
PM 10	0.219	250			
PM 2.5	0.218	250			
Pb	0.000	25	No		
NH3	0.009	250			

CO2e	2060.2				
2028					
Pollutant	Action Emissions		NCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)		
NOT IN A REGULATORY	AREA				
VOC	0.000	250			
NOx	-0.006	250			
СО	-0.005	250			
SOx	0.000	250			
PM 10	0.000	250			
PM 2.5	0.000	250			
Pb	0.000	25	No		
NH3	0.000	250			
CO2e	-6.8				

2029

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	0.000	250		
NOx	-0.006	250		
CO	-0.005	250		
SOx	0.000	250		
PM 10	0.000	250		
PM 2.5	0.000	250		
Pb	0.000	25	No	
NH3	0.000	250		
CO2e	-6.8			

2030

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	23.501	250		
NOx	83.174	250		
СО	-144.684	250		
SOx	3.868	250		
PM 10	-4.365	250		
PM 2.5	-3.928	250		
Pb	0.000	25	No	
NH3	0.028	250		
CO2e	12627.2			

2031					
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)		
NOT IN A REGULATORY	AREA				
VOC	58.152	250			
NOx	189.418	250			
СО	-264.041	250			
SOx	9.447	250			
PM 10	-8.081	250			
PM 2.5	-7.264	250			
Pb	0.000	25	No		
NH3	0.028	250			
CO2e	29603.8				

2032

	-		
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	57.791	250	
NOx	189.205	250	
СО	-269.142	250	
SOx	9.443	250	
PM 10	-8.088	250	
PM 2.5	-7.270	250	
Pb	0.000	25	No
NH3	-0.009	250	
CO2e	29082.8		

2033

	-		
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	60.891	250	
NOx	195.857	250	
СО	-262.829	250	
SOx	9.911	250	
PM 10	-7.951	250	
PM 2.5	-7.144	250	
Pb	0.000	25	No
NH3	-0.009	250	
CO2e	30473.3		

2034 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	60.891	250	
NOx	195.857	250	
CO	-262.829	250	
SOx	9.911	250	
PM 10	-7.951	250	
PM 2.5	-7.144	250	
Pb	0.000	25	No

NH3	-0.009	250	
CO2e	30473.3		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs.No further air assessment is needed.

mmA

Carolyn Hein, Contractor

3/31/2023 DATE

1. General Information

Action Location
Base: LAUGHLIN AFB
State: Texas
County(s): Val Verde
Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 1

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2026

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Laughlin AFB to prepare pilots to operate modern fourth and fifth generation aircraft. The Proposed Action is needed because current training practices with older T 38C aircraft do not prepare pilots adequately for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern, capable training platform with capabilities beyond those available with the T 38C. Additionally, training systems provided with the newer T 7A aircraft allow for enhanced and improved flight and simulator training. The T 7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T 7A recapitalization at Laughlin AFB would allow DAF to continue the geographically phased T 7A recapitalization sequence, ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2030 Add T-7As and LTOs
3.	Aircraft	2030 Add T-7A CPs
4.	Aircraft	2030 Increase T-7A Trim Test and Test Cell
5.	Aircraft	2030 Remove T-38C and LTOs
6.	Aircraft	2030 Remove T-38C CPs
7.	Aircraft	2030 Decrease T-38C Trim Test and Test Cell
8.	Aircraft	2031-2032 Add T-7As and LTOs
9.	Aircraft	2031-2032 Add T-7A CPs
10.	Aircraft	2031-2032 Increase T-7A Trim Test and Test Cell
11.	Aircraft	2031 Remove T-38C and LTOs
12.	Aircraft	2031 Remove T-38C CPs
13.	Aircraft	2031 Decrease T-38C Trim Test and Test Cell
14.	Aircraft	2033 Add T-7As and LTOs
15.	Aircraft	2033 Add T-7A CPs
16.	Aircraft	2033 Increase T-7A Trim Test and Test Cell
17.	Construction / Demolition	MILCON: Construct GBTS Facility
18.	Construction / Demolition	MILCON: Construct UMT Facility
19.	Construction / Demolition	MILCON: Construct Hush House
20.	Construction / Demolition	MILCON: Construct T-7A Shelters
21.	Construction / Demolition	MILCON: Addition to Egress Shop
22.	Construction / Demolition	MILCON: Construct Jet Blast Deflectors
23.	Construction / Demolition	FSRM: Modify Hangars
24.	Construction / Demolition	FSRM: Antenna Farm
25.	Construction / Demolition	FSRM: Squadron Operations Buildings Renovations
26.	Construction / Demolition	FSRM: Airfield Improvements
27.	Construction / Demolition	FSRM: Trim Pad
28.	Construction / Demolition	FSRM: T-7A Explosive Component Storage
29.	Heating	Heating/Cooling for New Facilities
30.	Heating	Remove Heating/Cooling for Demolished Facilities
31.	Personnel	Maximum Increase of 190 Personnel
32.	Personnel	Net Decrease of 60 Personnel
33.	Construction / Demolition	FSRM: Addition to Building 905

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 Add T-7As and LTOs

- Activity Description:

Starting in 2030, add 27 T-7As and 6,561 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	34.518419
SO _x	2.188102
NO _x	28.798002
СО	70.651882
PM 10	1.340769

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.260206
Pb	0.000000
NH ₃	0.000000
CO ₂ e	6285.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	33.737628	PM 2.5	0.413999
SO _x	1.973531	Pb	0.000000
NO _x	22.819304	NH ₃	0.000000
CO	69.362980	CO ₂ e	5963.5
PM 10	0.467031		

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycles Number of Annual Trim Test(s) per Aircraf		27 6561 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

2.5 Aerospace Ground Equipment (AGE)

2.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 6561

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

2.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

2.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Add T-7A CPs

- Activity Description:

Starting in 2030, add 14,435 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	7.179097
SO _x	4.081313
NO _x	60.168800
CO	12.107864
PM 10	0.450146

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)			
VOC	0.000000			
SO _x	0.000000			
NO _x	0.000000			
СО	0.000000			
PM 10	0.000000			

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.384278
Pb	0.000000
NH ₃	0.000000
CO ₂ e	12335.5

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		27
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles for	r all Aircraft:	14435
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2030, add trim test and engine test cell for 27 T-7As.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.155747
SO _x	0.051102
NO _x	0.848982
СО	2.470121
PM 10	0.056774

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.050874
Pb	0.000000
NH ₃	0.000000
CO ₂ e	154.5

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:	
4.2.2 Aircraft & Engines E	mission Factor(s)
- Aircraft & Engine Emissions Proprietary Information. C engine's Emission Factors.	Factors (lb/1000lb fuel) ontact Air Quality Subject Matter Expert for More Information regarding this
4.3 Aircraft Engine Test C	ell
4.3.1 Aircraft Engine Test	Cell Assumptions
- Engine Test Cell Total Number of Aircraft	Engines Tested Annually: 27
- Default Settings Used: Y	es
- Annual Run-ups / Test Dura Annual Run-ups (Per Airo Idle Duration (mins): Approach Duration (mins Intermediate Duration (m Military Duration (mins): After Burner Duration (m	craft Engine): 1 (default) 0 (default)): 4.97 (default) ins): 10.45 (default) 6.14 (default) ins): 2.04 (default)
4.3.2 Aircraft Engine Test	Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

4.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine)

2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C and LTOs

- Activity Description: Starting in 2030, remove 32 T-38Cs and 4,401 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-13.840498
SO _x	-1.321792
NO _x	-5.937370
СО	-149.215148
PM 10	-4.236465

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.851422
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3451.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-13.316758
SO _x	-1.177861
NO _x	-1.926967
CO	-148.350577
PM 10	-3.650377

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.283802
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3235.3

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

	a							
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO_2e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		32
Flight Operation Cycle Type:	LTO (Landing and Takeoff)	
Number of Annual Flight Operation Cycles for al	l Aircraft:	4401
Number of Annual Trim Test(s) per Aircraft:		0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	16.51
Approach [Approach] (mins):	3.89
Climb Out [Intermediate] (mins):	0.58
Takeoff [Military] (mins):	0.55
Takeoff [After Burn] (mins):	0.25

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxinary rower onit (Ar O) (default)							
Number of APU	Operation	Exempt	Designation	Manufacturer			
per Aircraft	Hours for Each	Source?					
	LTO						

- Auxiliary Power Unit (APU) (default)

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5.5 Aerospace Ground Equipment (AGE)

5.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes
- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 4401

- Aerospace Ground Equipment (AGE) (default)

Total Number of AGE	Operation Hours for Each LTO	ExemptAGE TypeSource?		Designation
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

5.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

5.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C CPs
- Activity Description: Starting in 2030, remove 9,682 T-38C CPs.
- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.519087
SO _x	-1.061133
NO _x	-0.933638
СО	-81.020664
PM 10	-1.927323

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant Emissions Per Year (TONs) PM 2.5 -1.729902 Pb 0.000000 NH₃ 0.000000 CO₂e -3207.2

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine		
Aircraft Designation:	T-38C	
Engine Model:	J85-GE-5R	
Primary Function:	Trainer	
Aircraft has After burn:	Yes	
Number of Engines:	2	
- Aircraft & Engine Surrogate		
Is Aircraft & Engine a Su	rrogate?	No
Original Aircraft Name:		
Original Engine Name:		

6.2.2 Aircraft & Engines Emission Factor(s)

	iigine Emissie	JIIS I actors	(10/1000101)	ucij				
	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:			32
Flight Operation Cycl	e Type:	CP (Close Pattern)	
Number of Annual Fl	ight Operation	Cycles for all Aircraft:	9682
Number of Annual Tr	im Test(s) per	Aircraft:	0
- Default Settings Used:	No		

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	3.59
Climb Out [Intermediate] (mins):	2.66
Takeoff [Military] (mins):	0.42
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $\Delta EM_{res} = (TIM / 60) * (EC / 1000) * EE * NE * EOC / 2000$

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Decrease T-38C Trim Test and Test Cell

- Activity Description:

Starting in 2030, remove trim test and engine test cell for 32 T-38Cs.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date	

ctivity End Date	
Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.282907
SO _x	-0.074500
NO _x	-0.215007
CO	-3.791705
PM 10	-0.075009

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.067420
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-225.2

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

7.3 Aircraft Engine Test Cell

7.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	64

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

7.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

7.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Val Verde

NOT IN A REGULATORY AREA **Regulatory Area(s):**

- Activity Title: 2031-2032 Add T-7As and LTOs

- Activity Description:

Starting in 2031, add 34 T-7As and 8,263 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2031
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	43.472900
SO _x	2.755722
NO _x	36.268540
CO	88.979805
PM 10	1.688580

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.587118
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7916.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	42.489563	PM 2.5	0.521396
SO _x	2.485488	Pb	0.000000
NO _x	28.738898	NH ₃	0.000000
CO	87.356547	CO ₂ e	7510.6
PM 10	0.588184		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No **Original Aircraft Name: Original Engine Name:**

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycles Number of Annual Trim Test(s) per Aircraf		34 8263 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8.5 Aerospace Ground Equipment (AGE)

8.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 8263

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

8.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

8.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031-2032 Add T-7A CPs

- Activity Description:

Starting in 2031, add 18,178 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	Yes		
End Month:	N/A		
End Year:	N/A		

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	9.040639
SO _x	5.139599
NO _x	75.770588
CO	15.247436
PM 10	0.566868

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)		
VOC	0.000000		
SO _x	0.000000		
NO _x	0.000000		
СО	0.000000		
PM 10	0.000000		

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.483921
Pb	0.000000
NH ₃	0.000000
CO ₂ e	15534.1

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:		34	
Flight Operation Cycle Type: CP (Close Pattern)			
Number of Annual Flight Operation Cycles for all Aircraft:			
Number of Annual Trim Test(s) per Aircraft:			
- Default Settings Used: No			
- Flight Operations TIMs (Time In Mode)			
Taxi [Idle] (mins):	0		
Approach [Approach] (mins):	3.57		
Climb Out [Intermediate] (mins):	2.63		
Takeoff [Military] (mins):	0.46		
Takeoff [After Burn] (mins):	0		

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031-2032 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2031, add trim test and engine test cell for 34 T-7As.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.196125
SO _x	0.064351
NO _x	1.069089
СО	3.110523
PM 10	0.071493

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.064063
Pb	0.000000
NH ₃	0.000000
CO ₂ e	194.5

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404-GE-1 Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1	02
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? Original Aircraft Name: Original Engine Name:	No
10.2.2 Aircraft & Engines Emission H	Factor(s)
 Aircraft & Engine Emissions Factors (Ill Proprietary Information. Contact Air Q engine's Emission Factors. 	b/1000lb fuel) Tuality Subject Matter Expert for More Information regarding this
10.3 Aircraft Engine Test Cell	
10.3.1 Aircraft Engine Test Cell Assu	mptions
- Engine Test Cell Total Number of Aircraft Engines Te	sted Annually: 34
- Default Settings Used: Yes	
- Annual Run-ups / Test Durations Annual Run-ups (Per Aircraft Engine Idle Duration (mins): Approach Duration (mins): Intermediate Duration (mins): Military Duration (mins): After Burner Duration (mins):	e): 1 (default) 0 (default) 4.97 (default) 10.45 (default) 6.14 (default) 2.04 (default)
10.3.2 Aircraft Engine Test Cell Emis	ssion Factor(s)
- See Aircraft & Engines Emission Factor	r(s)

10.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine)

2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Remove T-38C and LTOs
- Activity Description: Starting in 2031, remove 31 T-38Cs and 4,263 LTOs.
- Activity Start Date Start Month: 1 Start Year: 2031
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-13.406508
SO _x	-1.280345
NO _x	-5.751194
СО	-144.536282
PM 10	-4.103624

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.730654
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3343.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-12.899191
SO _x	-1.140927
NO _x	-1.866544
CO	-143.698820
PM 10	-3.535914

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.180833
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3133.9

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LTO (Landing and Takeoff)	
Number of Annual Flight Operation Cycles for al	l Aircraft:	4263
Number of Annual Trim Test(s) per Aircraft:		0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	16.51
Approach [Approach] (mins):	3.89
Climb Out [Intermediate] (mins):	0.58
Takeoff [Military] (mins):	0.55
Takeoff [After Burn] (mins):	0.25

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Muximary Tower Onit (MTO) (default)							
Number of APU	Operation	Exempt	Designation	Manufacturer			
per Aircraft	Hours for Each	Source?	-				
	LTO						

- Auxiliary Power Unit (APU) (default)

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11.5 Aerospace Ground Equipment (AGE)

11.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes
- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 4263

- Aerospace Ground Equipment (AGE) (default)

Total Number of AGE	Operation Hours for Each LTO	Exempt Source?	AGE Туре	Designation
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

11.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

11.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Remove T-38C CPs
- Activity Description: Starting in 2031, remove 9,379 T-38C CPs.
- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.377661
SO _x	-1.027924
NO _x	-0.904420
СО	-78.485107
PM 10	-1.867007

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

12.2 Aircraft & Engines

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.675764
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3106.8

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine		
Aircraft Designation:	T-38C	
Engine Model:	J85-GE-5R	
Primary Function:	Trainer	
Aircraft has After burn:	Yes	
Number of Engines:	2	
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:		No

12.2.2 Aircraft & Engines Emission Factor(s)

	iigine Emissie	JIIS I actors	(10/1000101)	ucij				
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cy	cles for all Aircraft:	9379
Number of Annual Trim Test(s) per Air	craft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	3.59
Climb Out [Intermediate] (mins):	2.66
Takeoff [Military] (mins):	0.42
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $\Delta EM_{res} = (TIM / 60) * (EC / 1000) * EE * NE * EOC / 2000$

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Decrease T-38C Trim Test and Test Cell

- Activity Description:

Starting in 2031, remove trim test and engine test cell for 31 T-38Cs.

- Activity Start Date Start Month: 1

Start	Year:	2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.274066
SO _x	-0.072172
NO _x	-0.208288
CO	-3.673214
PM 10	-0.072665

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.065313
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-218.1

13.2 Aircraft & Engines

13.2.1 Aircraft & Engines Assumptions

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

13.3 Aircraft Engine Test Cell

13.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	62

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

13.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

13.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Val Verde

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 Add T-7As and LTOs

- Activity Description:

Starting in 2033, add 2 T-7As and 486 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2033
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.556920
SO _x	0.162082
NO _x	2.133185
CO	5.233473
PM 10	0.099316

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.093349
Pb	0.000000
NH ₃	0.000000
CO ₂ e	465.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	2.499084
SO _x	0.146187
NO _x	1.690319
CO	5.137999
PM 10	0.034595

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.030667
Pb	0.000000
NH ₃	0.000000
CO ₂ e	441.7

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycle Number of Annual Trim Test(s) per Aircr		2 486 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

12
27
9
9
3

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14.5 Aerospace Ground Equipment (AGE)

14.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 486

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

14.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

14.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 Add T-7A CPs

- Activity Description:

Starting in 2033, add 1,069 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.531656
SO _x	0.302246
NO _x	4.455867
CO	0.896661
PM 10	0.033336

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028458
Pb	0.000000
NH ₃	0.000000
CO ₂ e	913.5

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		2
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:		1069
		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2033 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2033, add trim test and engine test cell for 2 T-7As.

- Activity Start Date

Start Month: 1 Start Year: 2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.011537
SO _x	0.003785
NO _x	0.062888
СО	0.182972
PM 10	0.004205

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.003768
Pb	0.000000
NH ₃	0.000000
CO ₂ e	11.4

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404-GE Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1	2-102
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? Original Aircraft Name: Original Engine Name:	No
16.2.2 Aircraft & Engines Emission	n Factor(s)
- Aircraft & Engine Emissions Factors Proprietary Information. Contact Air engine's Emission Factors.	(lb/1000lb fuel) Quality Subject Matter Expert for More Information regarding this
16.3 Aircraft Engine Test Cell	
16.3.1 Aircraft Engine Test Cell As	sumptions
- Engine Test Cell Total Number of Aircraft Engines	Tested Annually: 2
- Default Settings Used: Yes	
- Annual Run-ups / Test Durations Annual Run-ups (Per Aircraft Eng Idle Duration (mins): Approach Duration (mins): Intermediate Duration (mins): Military Duration (mins): After Burner Duration (mins):	ine): 1 (default) 0 (default) 4.97 (default) 10.45 (default) 6.14 (default) 2.04 (default)
16.3.2 Aircraft Engine Test Cell En	nission Factor(s)
- See Aircraft & Engines Emission Fact	tor(s)

16.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine)

2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

17. Construction / Demolition

17.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct GBTS Facility

- Activity Description:

Construction of the GBTS Facility (34,000 square feet) would occur from 2026 through 2027.

Site grading would occur on an area of approximately 3.5 acres (152,000 square feet). Site grading would begin in January 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 1,500 feet of excavation. A 3-foot trench width for utilities was assumed, for a total of 4,500 square feet. Trenching would begin in May 2026 and last approximately 2 months.

Construction of the new GBTS facility would total approximately 34,000 square feet. The height of the GBTS facility was assumed to be 15 feet. Construction would begin in July 2026 and last approximately 15 months.

Architectural coatings would be applied to the facility, totaling 34,000 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, parking areas, and roadways would occur on an area totaling approximately 35,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date

Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.884072

Pollutant	Total Emissions (TONs)
PM 2.5	0.099416

SO _x	0.009094
NO _x	2.754339
CO	3.972870
PM 10	6.237396

Pb	0.000000
NH ₃	0.002748
CO ₂ e	883.7

17.1 Site Grading Phase

17.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 4 Number of Days: 0

17.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	152000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	8
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	8
Tractors/Loaders/Backhoes Composite	2	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.1.3 Site Grading Phase Emission Factor(s)

Graders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	rs Composit	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

17.2 Trenching/Excavating Phase

17.2.1 Trenching / Excavating Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 5
Start Quarter: 1
Start Year: 2026
```

- Phase Duration Number of Month: 2 Number of Days: 0

17.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	4500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8

Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction Equipment Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozen	rs Composit	te									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/B	ackhoes Co	mposite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

17.3 Building Construction Phase

17.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1

Start Year: 2026

- Phase Duration Number of Month: 15 Number of Days: 0

17.3.2 Building Construction Phase Assumptions

- General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 34000 Height of Building (ft): 15 Number of Units: N/A
- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

17.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Generator Sets Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			
Welders Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

17.4 Architectural Coatings Phase

17.4.1 Architectural Coatings Phase Timeline Assumptions

Phase Start Date	
Start Month:	10
Start Quarter:	1
Start Year:	2027

_

- Phase Duration Number of Month: 1 Number of Days: 0

17.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 34000 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	50.00	50.00	0	0	0	0	0	

17.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

17.5 Paving Phase

17.5.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:	11
Start Quarter:	1
Start Year:	2027

- Phase Duration

Number of Month: 2 Number of Days: 0

17.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 35000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozers Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e

Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
------------------	--------	--------	--------	--------	--------	--------	--------	--------

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

				i i actors (g		/			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

18. Construction / Demolition

18.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct UMT Facility

- Activity Description:

Construction of the UMT Facility (11,500 square feet) would occur from 2026 through 2027.

Site grading would occur on an area of approximately 0.8 acres (35,000 square feet). Site grading would begin in January 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 1,500 feet of excavation. A 3-foot trench width for utilities was assumed, for a total of 4,500 square feet. Trenching would begin in May 2026 and last approximately 2 months.

Construction of the new UMT facility would total approximately 11,500 square feet. The height of the UMT facility was assumed to be 15 feet. Construction would begin in July 2026 and last approximately 15 months.

Architectural coatings would be applied to the facility, totaling 11,500 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, sidewalks and roadways would occur on an area totaling approximately 10,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.430947
SO _x	0.005936
NO _x	1.523831
СО	2.399582
PM 10	1.536463

Pollutant	Total Emissions (TONs)
PM 2.5	0.054174
Pb	0.000000
NH ₃	0.001575
CO ₂ e	576.5

18.1 Site Grading Phase

18.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 4 Number of Days: 0

18.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	35000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozer	s Composit	te						
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

				1 1 400015 ()					
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³)

HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)

HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

18.2 Trenching/Excavating Phase

18.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 5 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 2 Number of Days: 0

18.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	4500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction Equipment Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozers Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

18.3 Building Construction Phase

18.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 15 Number of Days: 0

18.3.2 Building Construction Phase Assumptions

General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 11500 Height of Building (ft): 15 Number of Units: N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

18.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77

Forklifts Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449	
Tractors/Loaders/Ba	ackhoes Co	mposite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

18.4 Architectural Coatings Phase

18.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 1 Number of Days: 0

18.4.2 Architectural Coatings Phase Assumptions

```
    General Architectural Coatings Information
Building Category: Non-Residential
Total Square Footage (ft<sup>2</sup>): 11500
Number of Units: N/A
```

- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

18.5 Paving Phase

18.5.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2027

- Phase Duration

Number of Month:	2
Number of Days:	0

18.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 10000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite	Graders Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction	Other Construction Equipment Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozen	s Composi	te									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/Ba	Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336

HDGV	000.890	000.006	000.817	013.497	000.022	000.020	000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002	000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003	000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038	000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020	000.054	00389.005

18.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

19. Construction / Demolition

19.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Hush House

- Activity Description:

Construction of the Hush House (24,111 square feet) would occur from 2026 through 2027.

Demolition would include Building 15 (approximately 1,000 square feet) and Building 18 (approximately 250 square feet). The height of the buildings was assumed to be 15 feet. Demolition would begin in January 2026 and last approximately 3 months.

Site grading would occur on an area of approximately 0.6 acres (25,000 square feet) for the Hush House site and approximately 0.6 acres (25,000 square feet) for the road alteration. Grading also would be required for removal of the existing road (25,000 square feet), for a total of approximately 75,000 square feet. Site grading would begin in April 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 100 feet of excavation. A 3-foot trench width for utilities was assumed. Excavation of the existing roadway also would be required (25,000 square feet). Total trenching/excavation area would be 25,300 square feet. Trenching would begin in August 2026 and last approximately 2 months.

Construction of the new Hush House would total approximately 24,111 square feet. The height of the Hush House was assumed to be 20 feet. Construction would begin in October 2026 and last approximately 12 months.

Architectural coatings would be applied to the facility, totaling 24,111 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, sidewalks and roadways would occur on an area totaling approximately 22,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date Start Month: 1

Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.708530
SO _x	0.007976
NO _x	2.413391
СО	3.529440
PM 10	3.579196

Pollutant	Total Emissions (TONs)
PM 2.5	0.087421
Pb	0.000000
NH ₃	0.002512
CO ₂ e	777.0

19.1 Demolition Phase

19.1.1 Demolition Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1

- Phase Duration

Start Year:

Number of Month: 3 Number of Days: 0

19.1.2 Demolition Phase Assumptions

2026

- General Demolition Information
 Area of Building to be demolished (ft²): 1250
 Height of Building to be demolished (ft): 15
- Default Settings Used: Yes
- Average Day(s) worked per week: 5 (default)
- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Concrete/Industrial Saws Composite	1	8
Rubber Tired Dozers Composite	1	1
Tractors/Loaders/Backhoes Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

_	Vehicle	Exhaust	Vehicle	Mixture	(%)
	, chicie	L'Anaust	, chicie	TIACUIC	(/ 0 /

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.1.3 Demolition Phase Emission Factor(s)

Concrete/Industrial Saws Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539		
Rubber Tired Dozers Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) * 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.2 Site Grading Phase

19.2.1 Site Grading Phase Timeline Assumptions

Phase Start Date	
Start Month:	4
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 4 Number of Days: 0

19.2.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	75000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0
- Site Grading Default Settings	
Default Settings Used: Yes	

Average Day(s) worked per week:	5 (default)
---------------------------------	-------------

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	

Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

· · · · · · · · · · · · · · · · · · ·											
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC				
POVs	0	0	0	0	0	100.00	0				

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.2.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	s Composi	te								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.2.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ HA_{OnSite}: \ Amount \ of \ Material \ to \ be \ Hauled \ On-Site \ (yd^3) \\ HA_{OffSite}: \ Amount \ of \ Material \ to \ be \ Hauled \ Off-Site \ (yd^3) \\ HC: \ Average \ Hauling \ Truck \ Capacity \ (yd^3) \\ (1 \ / \ HC): \ Conversion \ Factor \ cubic \ yards \ to \ trips \ (1 \ trip \ / \ HC \ yd^3) \\ HT: \ Average \ Hauling \ Truck \ Round \ Trip \ Commute \ (mile/trip) \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \mbox{ Vehicle Emissions (TONs)} \\ VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ 0.002205: \mbox{ Conversion Factor grams to pounds} \\ EF_{POL}: \mbox{ Emission Factor for Pollutant (grams/mile)} \\ VM: \mbox{ Vehicle Exhaust On Road Vehicle Mixture (%)} \\ 2000: \mbox{ Conversion Factor pounds to tons} \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.3 Trenching/Excavating Phase

19.3.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date

Start Month:	8
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 2

Number of Days: 0

19.3.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	25300
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.3.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Other Construction Equipment Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozers Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.3.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.4 Building Construction Phase

19.4.1 Building Construction Phase Timeline Assumptions

Phase Start Date	
Start Month:	10
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 12 Number of Days: 0

19.4.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:Office or IndustrialArea of Building (ft²):24111Height of Building (ft):20Number of Units:N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

LDGV LDGT HDGV	LDDV LDDT	HDDV MC	
----------------	-----------	---------	--

POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

19.4.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77				
Forklifts Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Generator Sets Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057				
Tractors/Loaders/B	ackhoes Co	mposite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				
Welders Composite	Welders Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.4.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours)

EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

19.5 Architectural Coatings Phase

19.5.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 1 Number of Days: 0

19.5.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 24111 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.5.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.5.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)

800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

19.6 Paving Phase

19.6.1 Paving Phase Timeline Assumptions

- Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2027

- Phase Duration Number of Month: 2 Number of Days: 0

19.6.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 22000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

- Average Hauling Truck Round Trip Commute (mile): 20 (default)
- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.6.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite													
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89					
Other Construction Equipment Composite													
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e					
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60					
Rubber Tired Dozen	Rubber Tired Dozers Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45					
Tractors/Loaders/Ba	Tractors/Loaders/Backhoes Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872					

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.6.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) PA: Paving Area (ft²) 0.25: Thickness of Paving Area (ft)

(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

20. Construction / Demolition

20.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct T-7A Shelters

- Activity Description:

Construction of 48 aircraft shelters (sunshades) would occur from 2026 through 2027.

Demolition would be required for the existing T-38C shelters. Demolition would include removal of 48 sunshades totaling approximately 150,000 square feet. Demolition would begin in January 2026 and last approximately 12 months.

Construction would include installation of 48 sunshades totaling approximately 150,000 square feet. The height of all sunshades were assumed to be 15 feet. Construction would begin in July 2026 and last approximately 12 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.407693
SO _x	0.007842
NO _x	2.459897
СО	3.819583
PM 10	0.554024

Pollutant	Total Emissions (TONs)
PM 2.5	0.081227
Pb	0.000000
NH ₃	0.004334
CO ₂ e	809.6

20.1 Demolition Phase

20.1.1 Demolition Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 12 Number of Days: 0

20.1.2 Demolition Phase Assumptions

General Demolition Information
 Area of Building to be demolished (ft²): 150000
 Height of Building to be demolished (ft): 15

- Default Settings Used: Yes

- Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day		
Concrete/Industrial Saws Composite	1	8		
Rubber Tired Dozers Composite	1	1		
Tractors/Loaders/Backhoes Composite	3	8		

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

20.1.3 Demolition Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Concrete/Industrial Saws Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539		
Rubber Tired Dozen	Rubber Tired Dozers Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

20.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment

WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) = 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \mbox{ Vehicle Emissions (TONs)} \\ VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ 0.002205: \mbox{ Conversion Factor grams to pounds} \\ EF_{POL}: \mbox{ Emission Factor for Pollutant (grams/mile)} \\ VM: \mbox{ Vehicle Exhaust On Road Vehicle Mixture (%)} \\ 2000: \mbox{ Conversion Factor pounds to tons} \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

20.2 Building Construction Phase

20.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 12

Number of Days: 0

20.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Office or Industrial
150000
15
N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

20.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Composite										

Average Hauling Truck Round Trip Commute (mile): 20 (default)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite	Welders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

20.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days) WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21. Construction / Demolition

21.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Addition to Egress Shop

- Activity Description:

Construction of the addition to the Egress Shop would occur from 2026 through 2027.

Construction of the Egress Shop addition would total approximately 3,400 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in January 2026 and last approximately 23 months.

Architectural coatings would be applied to the addition, totaling 3,400 square feet. Architectural coating application would begin in December 2027 and last approximately 1 month.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.255801
SO _x	0.004627
NO _x	1.057743
СО	1.914952
PM 10	0.033559

Pollutant	Total Emissions (TONs)
PM 2.5	0.033527
Pb	0.000000
NH ₃	0.001412
CO ₂ e	445.3

21.1 Building Construction Phase

21.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 23 Number of Days: 0

21.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	3400
Height of Building (ft):	20
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

21.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003	10	000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

21.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ BA: \ Area \ of \ Building \ (ft^2) \\ BH: \ Height \ of \ Building \ (ft) \\ (0.42 \ / \ 1000): \ Conversion \ Factor \ ft^3 \ to \ trips \ (0.42 \ trip \ / \ 1000 \ ft^3) \\ HT: \ Average \ Hauling \ Truck \ Round \ Trip \ Commute \ (mile/trip) \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21.2 Architectural Coatings Phase

21.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	12
Start Quarter:	1
Start Year:	2027

- Phase Duration

Number of Month: 1 Number of Days: 0

21.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 3400 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

21.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

21.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

22. Construction / Demolition

22.1 General Information & Timeline Assumptions

Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Jet Blast Deflectors

- Activity Description:

Construction of the jet blast deflectors would occur from 2026 through 2027.

Construction of the deflectors would total approximately 48,000 square feet. The high of the deflectors was assumed to be 12 feet. Construction would begin in January 2026 and last approximately 24 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	0
End Month:	2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.466869
SO _x	0.008803
NO _x	2.692399
CO	4.041546
PM 10	0.091521

Pollutant	Total Emissions (TONs)
PM 2.5	0.091423
Pb	0.000000
NH ₃	0.003192
CO ₂ e	849.9

22.1 Building Construction Phase

22.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 24 Number of Days: 0

22.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	48000
Height of Building (ft):	12
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

tt of mer 111										
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC			
POVs	50.00	50.00	0	0	0	0	0			

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

22.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77	
Forklifts Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449	
Generator Sets Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	

Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

22.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23. Construction / Demolition

23.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Modify Hangars

- Activity Description:

Modification of Buildings 50 and 210 would occur in 2026.

It was assumed 25 percent of the total square footage of the hangars (Building 50 = approximately 52,500 square feet; Building 210 = approximately 46,000 square feet) would be construction to equate the renovations (98,500 square feet * 0.25 = 24,625 square feet). The height of the hangars was assumed to be 25 feet. Renovations would begin in January 2026 and last approximately 11 months.

It was assumed architectural coatings would be required for the entire facility (98,500 square feet) following the renovations. Architectural coating application would begin in December 2026 and last approximately 1 month.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	1.357297
SO _x	0.004061
NO _x	1.248297
СО	1.863404
PM 10	0.042210

Pollutant	Total Emissions (TONs)
PM 2.5	0.042140
Pb	0.000000
NH ₃	0.001672
CO ₂ e	397.4

23.1 Building Construction Phase

23.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 11 Number of Days: 0

23.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	24625
Height of Building (ft):	25
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)									
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC		
POVs	50.00	50.00	0	0	0	0	0		

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

•	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

23.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite	:							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/B	ackhoes Co	mposite						
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

23.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23.2 Architectural Coatings Phase

23.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date	
Start Month:	12
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 1 Number of Days: 0

23.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information					
Building Category:	Non-Residential				
Total Square Footage (f	t ²): 98500				
Number of Units:	N/A				

- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.2.3 Architectural Coatings Phase Emission Factor(s)

- worker rrips Emission ractors (grams/mile)									
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

- Worker Trips Emission Factors (grams/mile)

23.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

24. Construction / Demolition

24.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Antenna Farm

- Activity Description:

Construction of the antenna farm as part of the GBTS facility would occur in 2026.

It was assumed approximately 5,000 square feet would be trenched and excavated for installation of the antenna farm. Trenching/excavation would begin in January 2026 and last approximately 12 months. Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.234605
SO _x	0.005168
NO _x	1.079323
СО	1.988326
PM 10	0.634433

Pollutant	Total Emissions (TONs)
PM 2.5	0.037540
Pb	0.000000
NH ₃	0.000717
CO ₂ e	487.1

24.1 Trenching/Excavating Phase

24.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date			
Start Month: 1			
Start Quarter: 1			
Start Year: 2026	5		
- Phase Duration			
Number of Month:	12		
Number of Days:	0		
- General Trenching/Exca Area of Site to be Tre Amount of Material (avating Phase Assumption avating Information enched/Excavated (ft ²): to be Hauled On-Site (yd ³): to be Hauled Off-Site (yd ³):	5000 0 0	
- Trenching Default Settin	ngs		
Default Settings Used	l: Yes		
Average Day(s) work	ed per week: 5 (default)		
- Construction Exhaust (d	lefault)		
	Equipment Name		Number

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

veniele Exhaust veniele Mixture (70)								
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	0	0	0	0	0	100.00	0	

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

	(Sruns/mile)								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983

MC 002.858 000.008	000.719 014.264	000.027 000.024	000.050 00395.027
--------------------	-----------------	-----------------	-------------------

24.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25. Construction / Demolition

25.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Squadron Operations Buildings Renovations

- Activity Description:

Squadron Operations Buildings Renovations (i.e., Buildings 307, 320, and 328) would occur in 2026.

It was assumed 25 percent of the total square footage of the buildings (Building 307 = approximately 13,000 square feet; Building 320 = approximately 78,500 square feet; Building 328 = approximately 45,000 square feet) would be construction to equate the renovations (136,500 square feet * 0.25 = 34,125 square feet). The height of the buildings was assumed to be 25 feet. Renovations would begin in January 2026 and last approximately 11 months.

It was assumed architectural coatings would be required for the entire facility (136,500 square feet) following the renovations. Architectural coating application would begin in December 2026 and last approximately 1 month.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	1.798520
SO _x	0.004078
NO _x	1.257903
СО	1.869855
PM 10	0.042386

Pollutant	Total Emissions (TONs)
PM 2.5	0.042299
Pb	0.000000
NH ₃	0.001806
CO ₂ e	402.6

25.1 Building Construction Phase

25.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 11 0

Number of Days:

25.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	34125
Height of Building (ft):	25
Number of Units:	N/A

- Building Construction Default Settings **Default Settings Used:** Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

25.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e

Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449	
Generator Sets Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	
Welders Composite	Welders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

25.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25.2 Architectural Coatings Phase

25.2.1 Architectural Coatings Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 12
Start Quarter: 1
Start Year: 2026
```

- Phase Duration Number of Month: 1 Number of Days: 0

25.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 136500 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

25.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

25.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

26. Construction / Demolition

26.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Airfield Improvements

- Activity Description:

Airfield improvements would occur in 2026.

Airfield improvements would occur on an area totaling approximately 607,000 square feet. Improvements would begin in January 2026 and last approximately 12 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.278284
SO _x	0.003494
NO _x	1.492374
CO	2.040054
PM 10	0.081524

Pollutant	Total Emissions (TONs)
PM 2.5	0.081481
Pb	0.000000
NH ₃	0.001094
CO ₂ e	349.9

26.1 Paving Phase

26.1.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 12 Number of Days: 0

26.1.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 607000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Pavers Composite	1	8

Paving Equipment Composite	2	8
Rollers Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

26.1.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009	10	000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

26.1.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

27. Construction / Demolition

27.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Trim Pad

- Activity Description:

Construction of the trim pad would occur in 2026.

Excavation of existing pavement would occur on an area totaling approximately 25,000 square feet. Excavation would begin in January 2026 and last approximately 4 months.

Pavement for the new trim pad would be required for an area totaling approximately 25,000 square feet. Paving would begin in May 2026 and last approximately 8 months.

- Activity Start Date

Start Month:	1
Start Month:	2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.230958
SO _x	0.003847
NO _x	1.202020
СО	1.887355
PM 10	1.048948

Pollutant	Total Emissions (TONs)
PM 2.5	0.054127
Pb	0.000000
NH ₃	0.001203
CO ₂ e	367.8

27.1 Trenching/Excavating Phase

27.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 4

Number of Days: 0

27.1.2 Trenching / Excavating Phase Assumptions

General Trenching/Excavating Information Area of Site to be Trenched/Excavated (ft²): 25000 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

27.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

27.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

27.2 Paving Phase

27.2.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 5 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 8 Number of Days: 0

27.2.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 25000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

27.2.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

27.2.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ PA: \mbox{ Paving Area (ft^2)} \\ 0.25: \mbox{ Thickness of Paving Area (ft)} \\ (1/27): \mbox{ Conversion Factor cubic feet to cubic yards (1 yd^3 / 27 ft^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1/HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

28. Construction / Demolition

28.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: T-7A Explosive Component Storage

- Activity Description:

Construction of the explosive component storage facility would occur in 2026.

Site grading would occur on an area of approximately 0.35 acres (15,000 square feet). Site grading would begin in January 2026 and last approximately 2 months.

Trenching for site utilities would require approximately 250 feet of excavation and trenching for site fencing would require approximately 500 feet of excavation. A 3-foot trench width for utilities and 1-foot trench width for fencing was assumed, for a total of 1,250 square feet. Trenching would begin in March 2026 and last approximately 1 month.

Construction of the new storage facility would total approximately 7,200 square feet. The height of the storage facility was assumed to be 12 feet. Construction would begin in April 2026 and last approximately 6 months.

Architectural coatings would be applied to the facility, totaling 7,200 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

The facility would require concrete or gravel hardstands and an access roadway. Paving would occur on an area totaling approximately 25,000 square feet. Paving would begin November 2026 and last approximately 2 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.242628
SO _x	0.002995
NO _x	0.827269
CO	1.264223
PM 10	0.342648

Pollutant	Total Emissions (TONs)
PM 2.5	0.031751
Pb	0.000000
NH ₃	0.000833
CO ₂ e	291.3

28.1 Site Grading Phase

28.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 2 Number of Days: 0

28.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	15000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6

Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Equipment	t Composite	e						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozen	s Composi	te							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

28.2 Trenching/Excavating Phase

28.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 3 Start Quarter: 1 Start Year: 2026

- Phase Duration	
Number of Month:	1
Number of Days:	0

28.2.2 Trenching / Excavating Phase Assumptions

 General Trenching/Excavating Information Area of Site to be Trenched/Excavated (ft²): 1250 Amount of Material to be Hauled On-Site (yd³): 0
 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Equipment	t Composite	e						
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozen	rs Composit	te							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- venicie E	Anaust &	WUIKEI III	ps Emissio	li Factors (g	31 ams/ mnc	,			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

28.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{VE}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

28.3 Building Construction Phase

28.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 4 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 6 Number of Days: 0

28.3.2 Building Construction Phase Assumptions

- General Building Construction Information

- Building Category:Office or IndustrialArea of Building (ft²):7200Height of Building (ft):12Number of Units:N/A
- Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

28.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77				
Forklifts Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Tractors/Loaders/B	ackhoes Co	mposite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					7				
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ BA: \ Area \ of \ Building \ (ft^2) \\ BH: \ Height \ of \ Building \ (ft) \\ (0.42 \ / \ 1000): \ Conversion \ Factor \ ft^3 \ to \ trips \ (0.42 \ trip \ / \ 1000 \ ft^3) \\ HT: \ Average \ Hauling \ Truck \ Round \ Trip \ Commute \ (mile/trip) \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

28.4 Architectural Coatings Phase

28.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	10
Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 1 Number of Days: 0

28.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 7200 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

28.5 Paving Phase

28.5.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:11Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 2 Number of Days: 0

28.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 25000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.5.3 Paving Phase Emission Factor(s)

Graders Composite		·		,								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89				
Other Construction Equipment Composite												
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60				
Rubber Tired Dozen	rs Composit	te										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45				
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

29. Heating

29.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating/Cooling for New Facilities

- Activity Description:

Heating/cooling for new facilities would begin with the arrival of the first T-7A aircraft and crews, or approximately January 2030. Heating/cooling would be required for the following facilities: GBTS Facility - 34,000 square feet UMT Facility - 11,500 square feet Hush House - 24,111 square feet Addition to the Egress Shop - 3,400 square feet T-7A Explosive Component Storage - 7,200 square feet Addition to Building 905 - 1,036 square feet

Total area to be heated -81,247 square feet

- Activity Start Date Start Month: 1

Start Year:	2030
-------------	------

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.015810
SO _x	0.001725
NO _x	0.287460
CO	0.241466
PM 10	0.021847

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.021847
Pb	0.000000
NH ₃	0.000000
CO ₂ e	346.1

29.2 Heating Assumptions

- Heating

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method
 - Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²):

81247 Natural Gas Commercial/Institutional (0.3 - 9.9 MMBtu/hr) 0.00105 0.0743

- Default Settings Used: Yes
- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)

29.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

29.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL} = FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant

2000: Conversion Factor pounds to tons

30. Heating

30.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Remove Heating/Cooling for Demolished Facilities

- Activity Description:

Heating/cooling for demolished facilities (Buildings 15 = approximately 1,000 square feet; Building 18 = approximately 250 square feet) no longer would be required starting in approximately January 2026.

- Activity Start Date

Start Month:1Start Year:2026

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.000311
SO _x	-0.000034
NO _x	-0.005649
СО	-0.004745
PM 10	-0.000429

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.000429
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-6.8

30.2 Heating Assumptions

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²): 1250 Natural Gas Commercial/Institutional (0.3 - 9.9 MMBtu/hr) 0.00105 0.0949

- Default Settings Used: Yes

- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)
- **30.3 Heating Emission Factor(s)**

⁻ Heating

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH3	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

30.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL} = FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

31. Personnel

31.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: Maximum Increase of 190 Personnel

- Activity Description:

Addition of 190 personnel during the T-7A and T-38C transition period (i.e., 2030 and 2031). Assumed all personnel commute daily.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2031

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.548963
SO _x	0.005708

Pollutant	Total Emissions (TONs)
PM 2.5	0.008553
Pb	0.000000

NO _x	0.323898
СО	7.752876
PM 10	0.009992

NH ₃	0.056079
CO ₂ e	792.1

31.2 Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	190
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

er Week (default)
er Week (default)
er Week (default)
er Week (default)
er Month (default)

31.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

31.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

31.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year $VMT_P = NP \mbox{ * } WD \mbox{ * } AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

32. Personnel

32.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: Net Decrease of 60 Personnel

- Activity Description:

Net decrease of 60 personnel following T-38C withdrawal (i.e., 2032). Assumed all personnel commute daily.

- Activity Start Date Start Month: 1

Start Year: 2032

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.086678
SO _x	-0.000901
NO _x	-0.051142
CO	-1.224138
PM 10	-0.001578

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001350
Pb	0.000000
NH ₃	-0.008855
CO ₂ e	-125.1

32.2 Personnel Assumptions

Active Duty Personnel:	60
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule	
Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

32.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

32.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

			(8-0						
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

32.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)

VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33. Construction / Demolition

33.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Addition to Building 905

- Activity Description:

Construction of the addition to Building 905 and parking area would occur in 2026.

Construction of the addition would total approximately 1,036 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in January 2026 and last approximately 9 months.

Architectural coatings would be applied to the addition, totaling 1,036 square feet. Architectural coating application would begin in October 2026 and last approximately 1 month.

Site grading for the parking area would occur on approximately 5,000 square feet. Site grading would begin in November 2026 and last approximately 1 month.

Paving for the parking area would occur on approximately 5,000 square feet. Paving would begin in December 2026 and last approximately 1 month.

- Activity Start Date

Start Month:	1
Start Month:	2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.133232
SO _x	0.002426
NO _x	0.614393
CO	1.013668
PM 10	0.071146

Pollutant	Total Emissions (TONs)
PM 2.5	0.021390
Pb	0.000000
NH ₃	0.000735
CO ₂ e	234.6

33.1 Site Grading Phase

33.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 1 Number of Days: 0

33.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	5000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89

Other Construction Equipment Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozers Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33.2 Building Construction Phase

33.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 9 Number of Days: 0

33.2.2 Building Construction Phase Assumptions

- General Building Construc	tion Information
Building Category:	Office or Industrial
Area of Building (ft ²):	1036
Height of Building (ft):	20
Number of Units:	N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

33.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour)

2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

33.3 Architectural Coatings Phase

33.3.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 1 Number of Days: 0

33.3.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 1036 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.3.3 Architectural Coatings Phase Emission Factor(s)

			(B					·	
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

- Worker Trips Emission Factors (grams/mile)

33.3.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

33.4 Paving Phase

33.4.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 12 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 1 Number of Days: 0

33.4.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 5000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.4.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	rs Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.4.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ PA: \ Paving \ Area \ (ft^2) \\ 0.25: \ Thickness \ of \ Paving \ Area \ (ft) \\ (1 \ / \ 27): \ Conversion \ Factor \ cubic \ feet \ to \ cubic \ yards \ (1 \ yd^3 \ / \ 27 \ ft^3) \\ HC: \ Average \ Hauling \ Truck \ Capacity \ (yd^3) \end{array}$

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:LAUGHLIN AFBState:TexasCounty(s):Val VerdeRegulatory Area(s):NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 2

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2026

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

2020

2026								
Pollutant	Action Emissions	INSIGNIFICAN	NCE INDICATOR					
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)					
NOT IN A REGULATORY	AREA							
VOC	5.466	250						
NOx	14.318	250						
СО	21.951	250						
SOx	0.049	250						
PM 10	14.076	250						
PM 2.5	0.539	250						
Pb	0.000	25	No					
NH3	0.015	250						
CO2e	4799.0							

Analysis Summary:

2027

2027								
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR						
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)					
NOT IN A REGULATORY	AREA							
VOC	1.962	250						
NOx	6.294	250						
СО	9.645	250						
SOx	0.021	250						
PM 10	0.219	250						
PM 2.5	0.218	250						
Pb	0.000	25	No					
NH3	0.009	250						

CO2e	2060.2		
	2	028	
Pollutant	Action Emissions		NCE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.000	250	
NOx	-0.006	250	
СО	-0.005	250	
SOx	0.000	250	
PM 10	0.000	250	
PM 2.5	0.000	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	-6.8		

2029

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.000	250	
NOx	-0.006	250	
CO	-0.005	250	
SOx	0.000	250	
PM 10	0.000	250	
PM 2.5	0.000	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	-6.8		

2030

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	33.929	250	
NOx	105.415	250	
CO	-123.987	250	
SOx	5.435	250	
PM 10	-3.917	250	
PM 2.5	-3.516	250	
Pb	0.000	25	No
NH3	0.028	250	
CO2e	17282.5		

2031			
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	81.704	250	
NOx	239.660	250	
СО	-217.296	250	
SOx	12.987	250	
PM 10	-7.070	250	
PM 2.5	-6.336	250	
Pb	0.000	25	No
NH3	0.028	250	
CO2e	40119.8		

2032

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	Y AREA		
VOC	81.343	250	
NOx	239.447	250	
СО	-222.397	250	
SOx	12.984	250	
PM 10	-7.076	250	
PM 2.5	-6.341	250	
Pb	0.000	25	No
NH3	-0.009	250	
CO2e	39598.7		

2033

2000			
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	85.213	250	
NOx	247.747	250	
СО	-214.556	250	
SOx	13.568	250	
PM 10	-6.906	250	
PM 2.5	-6.185	250	
Pb	0.000	25	No
NH3	-0.009	250	
CO2e	41334.2		

2034 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	85.213	250	
NOx	247.747	250	
СО	-214.556	250	
SOx	13.568	250	
PM 10	-6.906	250	
PM 2.5	-6.185	250	
Pb	0.000	25	No

NH3	-0.009	250	
CO2e	41334.2		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs.No further air assessment is needed.

mmA

Carolyn Hein, Contractor

3/31/2023 DATE

1. General Information

Action Location

Base: LAUGHLIN AFB
State: Texas
County(s): Val Verde
Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 2

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2026

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Laughlin AFB to prepare pilots to operate modern fourth and fifth generation aircraft. The Proposed Action is needed because current training practices with older T 38C aircraft do not prepare pilots adequately for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern, capable training platform with capabilities beyond those available with the T 38C. Additionally, training systems provided with the newer T 7A aircraft allow for enhanced and improved flight and simulator training. The T 7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T 7A recapitalization at Laughlin AFB would allow DAF to continue the geographically phased T 7A recapitalization sequence, ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2030 Add T-7As and LTOs
3.	Aircraft	2030 Add T-7A CPs
4.	Aircraft	2030 Increase T-7A Trim Test and Test Cell
5.	Aircraft	2030 Remove T-38C and LTOs
6.	Aircraft	2030 Remove T-38C CPs
7.	Aircraft	2030 Decrease T-38C Trim Test and Test Cell
8.	Aircraft	2031-2032 Add T-7As and LTOs
9.	Aircraft	2031-2032 Add T-7A CPs
10.	Aircraft	2031-2032 Increase T-7A Trim Test and Test Cell
11.	Aircraft	2031 Remove T-38C and LTOs
12.	Aircraft	2031 Remove T-38C CPs
13.	Aircraft	2031 Decrease T-38C Trim Test and Test Cell
14.	Aircraft	2033 Add T-7As and LTOs
15.	Aircraft	2033 Add T-7A CPs
16.	Aircraft	2033 Increase T-7A Trim Test and Test Cell
17.	Construction / Demolition	MILCON: Construct GBTS Facility
18.	Construction / Demolition	MILCON: Construct UMT Facility
19.	Construction / Demolition	MILCON: Construct Hush House
20.	Construction / Demolition	MILCON: Construct T-7A Shelters
21.	Construction / Demolition	MILCON: Addition to Egress Shop
22.	Construction / Demolition	MILCON: Construct Jet Blast Deflectors
23.	Construction / Demolition	FSRM: Modify Hangars
24.	Construction / Demolition	FSRM: Antenna Farm
25.	Construction / Demolition	FSRM: Squadron Operations Buildings Renovations
26.	Construction / Demolition	FSRM: Airfield Improvements
27.	Construction / Demolition	FSRM: Trim Pad
28.	Construction / Demolition	FSRM: T-7A Explosive Component Storage
29.	Heating	Heating/Cooling for New Facilities
30.	Heating	Remove Heating/Cooling for Demolished Facilities
31.	Personnel	Maximum Increase of 190 Personnel
32.	Personnel	Net Decrease of 60 Personnel
33.	Construction / Demolition	FSRM: Addition to Building 905

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 Add T-7As and LTOs

- Activity Description:

Starting in 2030, add 27 T-7As and 8,202 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2030

_	Activity	End	Date
-	ACTIVITY	Linu	Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	43.151970
SO _x	2.735378
NO _x	36.000795
CO	88.322929
PM 10	1.676115

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.575401
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7857.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	42.175892	PM 2.5	0.517547
SO _x	2.467139	Pb	0.000000
NO _x	28.526739	NH ₃	0.000000
CO	86.711655	CO ₂ e	7455.1
PM 10	0.583842		

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation:
 T-7A
 Engine Model:
 F404-GE-102
 Primary Function:
 Trainer
 Aircraft has After burn:
 Yes
 Number of Engines:
 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LTO (Landing and Takeoff)	27
Number of Annual Flight Operation Cycle		8202
Number of Annual Trim Test(s) per Aircr	aft:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

2.5 Aerospace Ground Equipment (AGE)

2.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes
- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 8202

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		-
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

2.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

2.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Add T-7A CPs

- Activity Description:

Starting in 2030, add 18,043 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	8.973498
SO _x	5.101430
NO _x	75.207874
СО	15.134200
PM 10	0.562659

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.480327
Pb	0.000000
NH ₃	0.000000
CO ₂ e	15418.7

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this
 - Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding thi engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		27
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		18043
Number of Annual Trim Test(s) per Aircraft	:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2030, add trim test and engine test cell for 27 T-7As.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.155747
SO _x	0.051102
NO _x	0.848982
CO	2.470121
PM 10	0.056774

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.050874
Pb	0.000000
NH ₃	0.000000
CO ₂ e	154.5

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Aircraft Engine Test Cell

4.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell Total Number of Aircraft Engines Tested Annually: 27

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

4.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

4.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel)

NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 Remove T-38C and LTOs

- Activity Description:

Starting in 2030, remove 32 T-38Cs and 4,401 LTOs.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-13.840498
SO _x	-1.321792
NO _x	-5.937370
CO	-149.215148
PM 10	-4.236465

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.851422
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3451.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (IONS)	Polluta	nt Emissions Per Year (IONs)
VOC	-13.316758	PM 2.5	-3.283802
SO _x	-1.177861	Pb	0.000000
NO _x	-1.926967	NH ₃	0.000000
СО	-148.350577	CO ₂ e	-3235.3

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e	
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234	
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234	
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234	
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234	
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234	

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		32
Flight Operation Cycle Type:	LTO (Landing and Takeoff)	
Number of Annual Flight Operation Cycles for a	ll Aircraft:	4401
Number of Annual Trim Test(s) per Aircraft:		0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	16.51
Approach [Approach] (mins):	3.89
Climb Out [Intermediate] (mins):	0.58
Takeoff [Military] (mins):	0.55
Takeoff [After Burn] (mins):	0.25

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): 12 Approach (mins): 27

Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5.5 Aerospace Ground Equipment (AGE)

5.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 4401

Total Number of **Operation Hours** Exempt **AGE Type** Designation AGE for Each LTO Source? 0.5 No Air Compressor MC-1A - 18.4hp 1 Generator Set 0.17 A/M32A-86D 1 No 1 0.17 No Heater H10.5 Hydraulic Test Stand MJ-1-1 1 No 1 1 No Light Cart TF-1

- Aerospace Ground Equipment (AGE) (default)

5.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2

TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7
------	-----	-------	-------	-------	-------	-------	-------	------

5.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C CPs
- Activity Description: Starting in 2030, remove 9,682 T-38C CPs.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.519087
SO _x	-1.061133
NO _x	-0.933638
СО	-81.020664
PM 10	-1.927323

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.729902
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3207.2

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- An crait & Engine Emissions ractors (10/100010 ruci)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		32
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	9682
Number of Annual Trim Test(s) per Aircraft	t:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.59	
Climb Out [Intermediate] (mins):	2.66	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

0.42

0

- Trim Test

111111 1 050	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0

Takeoff [Military] (mins):

Takeoff [After Burn] (mins):

AfterBurn (mins): 0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Decrease T-38C Trim Test and Test Cell

- Activity Description:

Starting in 2030, remove trim test and engine test cell for 32 T-38Cs.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.282907
SO _x	-0.074500
NO _x	-0.215007
СО	-3.791705
PM 10	-0.075009

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.067420
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-225.2

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	8		(,				
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

7.3 Aircraft Engine Test Cell

7.3.1 Aircraft Engine Test Cell Assumptions

Engine Test Cell
 Total Number of Aircraft Engines Tested Annually: 64

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

7.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

7.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs - Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031-2032 Add T-7As and LTOs

- Activity Description:

Starting in 2031, add 34 T-7As and 10,328 LTOs.

- Activity Start Date Start Month: 1

Start	Year:	2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)		
VOC	54.337179		
SO _x	3.444402		
NO _x	45.332383		
CO	111.216680		
PM 10	2.110572		

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.983753
Pb	0.000000
NH ₃	0.000000
CO ₂ e	9894.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	53.108097	PM 2.5	0.651697
SO _x	3.106634	Pb	0.000000
NO _x	35.921014	NH ₃	0.000000
CO	109.187755	CO ₂ e	9387.5
PM 10	0.735177		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation:
 T-7A
 Engine Model:
 F404-GE-102
 Primary Function:
 Trainer
 Aircraft has After burn:
 Yes
 Number of Engines:
 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information Contact Air Quality Subject Matter Expert for

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycles f	LTO (Landing and Takeoff)	34 10328
Number of Annual Flight Operation Cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8.5 Aerospace Ground Equipment (AGE)

8.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes
- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 10328

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		-
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

8.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

8.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031-2032 Add T-7A CPs

- Activity Description:

Starting in 2031, add 22,721 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	11.300052
SO _x	6.424075
NO _x	94.706983
СО	19.058037
PM 10	0.708539

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.604861
Pb	0.000000
NH ₃	0.000000
CO ₂ e	19416.3

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		34
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	22721
Number of Annual Trim Test(s) per Aircraf	t:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031-2032 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2031, add trim test and engine test cell for 34 T-7As.

- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	Yes	
End Month:	N/A	
End Year:	N/A	

- Activity Emissions:

Pollutant	ant Emissions Per Year (TONs)		
VOC	0.196125		
SO _x	0.064351		
NO _x	1.069089		
СО	3.110523		
PM 10	0.071493		

Pollutant	Emissions Per Year (TONs)	
PM 2.5	0.064063	
Pb	0.000000	
NH ₃	0.000000	
CO ₂ e	194.5	

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

10.3 Aircraft Engine Test Cell

10.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell Total Number of Aircraft Engines Tested Annually: 34

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

10.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

10.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel)

NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 Remove T-38C and LTOs

- Activity Description:

Starting in 2031, remove 31 T-38Cs and 4,263 LTOs.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-13.406508
SO _x	-1.280345
NO _x	-5.751194
СО	-144.536282
PM 10	-4.103624

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.730654
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3343.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONS)	Pollutant	Emissions Per Year (IONS)
VOC	-12.899191	PM 2.5	-3.180833
SO _x	-1.140927	Pb	0.000000
NO _x	-1.866544	NH ₃	0.000000
СО	-143.698820	CO ₂ e	-3133.9

10 -3.535914

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

Aircraft & Engine

 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LTO (Landing and Takeoff)	
Number of Annual Flight Operation Cycles for a	all Aircraft:	4263
Number of Annual Trim Test(s) per Aircraft:		0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	16.51
Approach [Approach] (mins):	3.89
Climb Out [Intermediate] (mins):	0.58
Takeoff [Military] (mins):	0.55
Takeoff [After Burn] (mins):	0.25

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): 12 Approach (mins): 27

Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11.5 Aerospace Ground Equipment (AGE)

11.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 4263

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		_
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

11.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2

TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7
------	-----	-------	-------	-------	-------	-------	-------	------

11.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Remove T-38C CPs
- Activity Description: Starting in 2031, remove 9,379 T-38C CPs.
- Activity Start Date Start Month: 1 Start Year: 2031
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.377661
SO _x	-1.027924
NO _x	-0.904420
СО	-78.485107
PM 10	-1.867007

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.675764
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3106.8

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

12.2 Aircraft & Engines

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

12.2.2 Aircraft & Engines Emission Factor(s)

- An crait & Engine Emissions Factors (10/100010 fuct)								
	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cyc	les for all Aircraft:	9379
Number of Annual Trim Test(s) per Airc	raft:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Ammunah [Ammunah] (mimu)	2.50	

Approach [Approach] (mins):	3.59
Climb Out [Intermediate] (mins):	2.66
Takeoff [Military] (mins):	0.42
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

111111 1050	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0

AfterBurn (mins): 0

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Decrease T-38C Trim Test and Test Cell

- Activity Description:

Starting in 2031, remove trim test and engine test cell for 31 T-38Cs.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.274066
SO _x	-0.072172
NO _x	-0.208288
СО	-3.673214
PM 10	-0.072665

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.065313
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-218.1

13.2 Aircraft & Engines

13.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

			() = 2 = 2 = 2 = 2 = 2	,				
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

13.3 Aircraft Engine Test Cell

13.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	62

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

13.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

13.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCell P S_{IDLE} + TestCell P S_{APPROACH} + TestCell P S_{INTERMEDIATE} + TestCell P S_{MILITARY} + TestCell P S_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 Add T-7As and LTOs

- Activity Description:

Starting in 2033, add 2 T-7As and 607 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2033
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	3.193519
SO _x	0.202435
NO _x	2.664287
CO	6.536457
PM 10	0.124043

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.116590
Pb	0.000000
NH ₃	0.000000
CO ₂ e	581.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	3.121283	PM 2.5	0.038302
SO _x	0.182584	Pb	0.000000
NO _x	2.111160	NH ₃	0.000000
СО	6.417212	CO ₂ e	551.7
PM 10	0.043208		

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for N

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LTO (Landing and Takeoff)	2
Number of Annual Flight Operation Cycle	s for all Aircraft:	607
Number of Annual Trim Test(s) per Aircra	aft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14.5 Aerospace Ground Equipment (AGE)

14.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 607

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

14.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow			0.44.0		0.0=1	0.0.00	• • •
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

14.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2033 Add T-7A CPs

- Activity Description:

Starting in 2033, add 1,337 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.664943
SO _x	0.378020
NO _x	5.572961
СО	1.121456
PM 10	0.041693

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035593
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1142.5

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		2
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	1337
Number of Annual Trim Test(s) per Aircra	Number of Annual Trim Test(s) per Aircraft:	
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2033 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2033, add trim test and engine test cell for 2 T-7As.

- Activity Start Date

Start Mo	nth: 1
Start Yea	r: 2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.011537
SO _x	0.003785
NO _x	0.062888
CO	0.182972
PM 10	0.004205

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.003768
Pb	0.000000
NH ₃	0.000000
CO ₂ e	11.4

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

16.3 Aircraft Engine Test Cell

16.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell Total Number of Aircraft Engines Tested Annually: 2

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

16.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

16.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

17. Construction / Demolition

17.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct GBTS Facility

- Activity Description:

Construction of the GBTS Facility (34,000 square feet) would occur from 2026 through 2027.

Site grading would occur on an area of approximately 3.5 acres (152,000 square feet). Site grading would begin in January 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 1,500 feet of excavation. A 3-foot trench width for utilities was assumed, for a total of 4,500 square feet. Trenching would begin in May 2026 and last approximately 2 months.

Construction of the new GBTS facility would total approximately 34,000 square feet. The height of the GBTS facility was assumed to be 15 feet. Construction would begin in July 2026 and last approximately 15 months.

Architectural coatings would be applied to the facility, totaling 34,000 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, parking areas, and roadways would occur on an area totaling approximately 35,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.884072
SO _x	0.009094
NO _x	2.754339
СО	3.972870
PM 10	6.237396

Pollutant	Total Emissions (TONs)
PM 2.5	0.099416
Pb	0.000000
NH ₃	0.002748
CO ₂ e	883.7

17.1 Site Grading Phase

17.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 4 Number of Days: 0

17.1.2 Site Grading Phase Assumptions

152000
0
0

- Site Grading Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Graders Composite	1	8
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	8
Tractors/Loaders/Backhoes Composite	2	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	s Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)

HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

17.2 Trenching/Excavating Phase

17.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 5 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 2 Number of Days: 0

17.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	4500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction	Other Construction Equipment Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	rs Composi	te								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/B	ackhoes Co	mposite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

17.3 Building Construction Phase

17.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 15 Number of Days: 0

17.3.2 Building Construction Phase Assumptions

General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 34000 Height of Building (ft): 15 Number of Units: N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

17.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Com	posite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/B	ackhoes Co	mposite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VT}: \ Vender \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

17.4 Architectural Coatings Phase

17.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2027
- Phase Duration Number of Month: 1 Number of Days: 0

17.4.2 Architectural Coatings Phase Assumptions

 General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 34000 Number of Units: N/A

- Architectural Coatings Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

vonker miss vehiele winkture (70)											
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC				
POVs	50.00	50.00	0	0	0	0	0				

17.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

17.5 Paving Phase

17.5.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: Start Quarter: Start Year:		
- Phase Duration Number of Mor Number of Day		
17.5.2 Paving Pha	se Assumptions	
- General Paving In Paving Area (ft		
- Paving Default Set Default Settings Average Day(s)	0	Yes 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozers Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		

Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

						/			
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

18. Construction / Demolition

18.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct UMT Facility

- Activity Description:

Construction of the UMT Facility (11,500 square feet) would occur from 2026 through 2027.

Site grading would occur on an area of approximately 0.8 acres (35,000 square feet). Site grading would begin in January 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 1,500 feet of excavation. A 3-foot trench width for utilities was assumed, for a total of 4,500 square feet. Trenching would begin in May 2026 and last approximately 2 months.

Construction of the new UMT facility would total approximately 11,500 square feet. The height of the UMT facility was assumed to be 15 feet. Construction would begin in July 2026 and last approximately 15 months.

Architectural coatings would be applied to the facility, totaling 11,500 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, sidewalks and roadways would occur on an area totaling approximately 10,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date Indefinite: False End Month: 12

End Month: 2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.430947
SO _x	0.005936
NO _x	1.523831
СО	2.399582
PM 10	1.536463

Pollutant	Total Emissions (TONs)
PM 2.5	0.054174
Pb	0.000000
NH ₃	0.001575
CO ₂ e	576.5

18.1 Site Grading Phase

18.1.1 Site Grading Phase Timeline Assumptions

-	Phase	Start	Date
---	-------	-------	------

Start Month:	1
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 4 Number of Days: 0

18.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	35000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	rs Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

		vormer 111				/			
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

18.2 Trenching/Excavating Phase

18.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date	
Start Month:	5
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 2 Number of Days: 0

18.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	4500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite													
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89					
Other Construction Equipment Composite													
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60					
Rubber Tired Dozen	Rubber Tired Dozers Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45					
Tractors/Loaders/B	ackhoes Co	mposite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872					

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

18.3 Building Construction Phase

18.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 15 Number of Days: 0

18.3.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	11500
Height of Building (ft):	15
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

18.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Tractors/Loaders/Ba	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)1.25: Conversion Factor Number of Construction Equipment to Number of WorksNE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

18.4 Architectural Coatings Phase

18.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2027
- Phase Duration Number of Month: 1 Number of Days: 0

18.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 11500 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- `	Worker	Trips	Vehicle	Mixture ((%))
-----	--------	-------	---------	-----------	-----	---

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

(Sruns/mic)									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

18.5 Paving Phase

18.5.1 Paving Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 11
Start Quarter: 1
```

Start	Year:	2027

- Phase Duration Number of Month: 2 Number of Days: 0

18.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 10000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Equipment	t Composite	e						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozer	s Composit	te							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Ba	Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

Average Hauling Truck Round Trip Commute (mile): 20 (default)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

19. Construction / Demolition

19.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Hush House

- Activity Description:

Construction of the Hush House (24,111 square feet) would occur from 2026 through 2027.

Demolition would include Building 15 (approximately 1,000 square feet) and Building 18 (approximately 250 square feet). The height of the buildings was assumed to be 15 feet. Demolition would begin in January 2026 and last approximately 3 months.

Site grading would occur on an area of approximately 0.6 acres (25,000 square feet) for the Hush House site and approximately 0.6 acres (25,000 square feet) for the road alteration. Grading also would be required for removal of the existing road (25,000 square feet), for a total of approximately 75,000 square feet. Site grading would begin in April 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 100 feet of excavation. A 3-foot trench width for utilities was assumed. Excavation of the existing roadway also would be required (25,000 square feet). Total trenching/excavation area would be 25,300 square feet. Trenching would begin in August 2026 and last approximately 2 months.

Construction of the new Hush House would total approximately 24,111 square feet. The height of the Hush House was assumed to be 20 feet. Construction would begin in October 2026 and last approximately 12 months.

Architectural coatings would be applied to the facility, totaling 24,111 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, sidewalks and roadways would occur on an area totaling approximately 22,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.708530
SO _x	0.007976
NO _x	2.413391
CO	3.529440
PM 10	3.579196

Pollutant	Total Emissions (TONs)
PM 2.5	0.087421
Pb	0.000000
NH ₃	0.002512
CO ₂ e	777.0

19.1 Demolition Phase

19.1.1 Demolition Phase Timeline Assumptions

```
- Phase Start Date
```

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 3 Number of Days: 0

19.1.2 Demolition Phase Assumptions

- General Demolition Information
 Area of Building to be demolished (ft²): 1250
 Height of Building to be demolished (ft): 15
- Default Settings Used: Yes
- Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Concrete/Industrial Saws Composite	1	8
Rubber Tired Dozers Composite	1	1
Tractors/Loaders/Backhoes Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
--	------	------	------	------	------	------	----

DOLL	5 0.00	50.00	â	0	0	â	0
POVs	50.00	50.00	0	0	0	0	0

19.1.3 Demolition Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Concrete/Industrial Saws Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539
Rubber Tired Dozers Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (0.00042 * BA * BH) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (1 / 27) * 0.25 * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ BA: \mbox{ Area of Building being demolish (ft^2)} \\ BH: \mbox{ Height of Building being demolish (ft)} \\ (1/27): \mbox{ Conversion Factor cubic feet to cubic yards (1 yd^3 / 27 ft^3)} \\ 0.25: \mbox{ Volume reduction factor (material reduced by 75% to account for air space)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \end{array}$

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

19.2 Site Grading Phase

19.2.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 4 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 4 Number of Days: 0

19.2.2 Site Grading Phase Assumptions

)0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.2.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89				
Other Construction Equipment Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60				
Rubber Tired Dozen	Rubber Tired Dozers Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45				
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e		
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502		
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336		
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820		
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249		
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998		
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796		
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005		

19.2.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)

20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)ACRE: Total acres (acres)WD: Number of Total Work Days (days)2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.3 Trenching/Excavating Phase

19.3.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date	
Start Month:	8
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 2 Number of Days: 0

19.3.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	25300
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

veniere Exhlust veniere Mixture (70)										
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC			
POVs	0	0	0	0	0	100.00	0			

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.3.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction Equipment Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozen	Rubber Tired Dozers Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			

Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.3.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

$VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.4 Building Construction Phase

19.4.1 Building Construction Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 10
Start Quarter: 1
Start Year: 2026
```

- Phase Duration

Number of Month:12Number of Days:0

19.4.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	24111
Height of Building (ft):	20
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

- Average Hauling Truck Round Trip Commute (mile): 20 (default)
- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

19.4.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite	:							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/B	ackhoes Co	mposite						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.4.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.5 Architectural Coatings Phase

19.5.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2027
- Phase Duration Number of Month: 1 Number of Days: 0

19.5.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 24111 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.5.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

				/					
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.5.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

19.6 Paving Phase

19.6.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:	11
Start Quarter:	1
Start Year:	2027

- Phase Duration

Number of Month:2Number of Days:0

19.6.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 22000

- Paving Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.6.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction	Other Construction Equipment Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	s Composi	te								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

				37					
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.6.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

 VMT_{VE} : Vehicle Exhaust Vehicle Miles Travel (miles) PA: Paving Area (ft²)

0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

20. Construction / Demolition

20.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct T-7A Shelters

- Activity Description:

Construction of 48 aircraft shelters (sunshades) would occur from 2026 through 2027.

Demolition would be required for the existing T-38C shelters. Demolition would include removal of 48 sunshades totaling approximately 150,000 square feet. Demolition would begin in January 2026 and last approximately 12 months.

Construction would include installation of 48 sunshades totaling approximately 150,000 square feet. The height of all sunshades were assumed to be 15 feet. Construction would begin in July 2026 and last approximately 12 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.407693
SO _x	0.007842
NO _x	2.459897
СО	3.819583
PM 10	0.554024

Pollutant	Total Emissions (TONs)
PM 2.5	0.081227
Pb	0.000000
NH ₃	0.004334
CO ₂ e	809.6

20.1 Demolition Phase

20.1.1 Demolition Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 12 Number of Days: 0

20.1.2 Demolition Phase Assumptions

General Demolition Information
 Area of Building to be demolished (ft²): 150000
 Height of Building to be demolished (ft): 15

- Default Settings Used: Yes

- Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day		
Concrete/Industrial Saws Composite	1	8		
Rubber Tired Dozers Composite	1	1		
Tractors/Loaders/Backhoes Composite	3	8		

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

20.1.3 Demolition Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Concrete/Industrial Saws Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539
Rubber Tired Dozen	Rubber Tired Dozers Composite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

20.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment

WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) = 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

20.2 Building Construction Phase

20.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 12

Number of Days: 0

20.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Office or Industrial
150000
15
N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

20.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Composite								

Average Hauling Truck Round Trip Commute (mile): 20 (default)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/Ba	ackhoes Co	mposite						
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite	Welders Composite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					-	/			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

20.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days) WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21. Construction / Demolition

21.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Addition to Egress Shop

- Activity Description:

Construction of the addition to the Egress Shop would occur from 2026 through 2027.

Construction of the Egress Shop addition would total approximately 3,400 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in January 2026 and last approximately 23 months.

Architectural coatings would be applied to the addition, totaling 3,400 square feet. Architectural coating application would begin in December 2027 and last approximately 1 month.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.255801
SO _x	0.004627
NO _x	1.057743
СО	1.914952
PM 10	0.033559

Pollutant	Total Emissions (TONs)
PM 2.5	0.033527
Pb	0.000000
NH ₃	0.001412
CO ₂ e	445.3

21.1 Building Construction Phase

21.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 23 Number of Days: 0

21.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	3400
Height of Building (ft):	20
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

21.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite	Forklifts Composite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					7				
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

21.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ BA: \ Area \ of \ Building \ (ft^2) \\ BH: \ Height \ of \ Building \ (ft) \\ (0.42 \ / \ 1000): \ Conversion \ Factor \ ft^3 \ to \ trips \ (0.42 \ trip \ / \ 1000 \ ft^3) \\ HT: \ Average \ Hauling \ Truck \ Round \ Trip \ Commute \ (mile/trip) \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21.2 Architectural Coatings Phase

21.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	12
Start Quarter:	1
Start Year:	2027

- Phase Duration

Number of Month: 1 Number of Days: 0

21.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 3400 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

21.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

21.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

22. Construction / Demolition

22.1 General Information & Timeline Assumptions

Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Jet Blast Deflectors

- Activity Description:

Construction of the jet blast deflectors would occur from 2026 through 2027.

Construction of the deflectors would total approximately 48,000 square feet. The high of the deflectors was assumed to be 12 feet. Construction would begin in January 2026 and last approximately 24 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	0
End Month:	2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.466869
SO _x	0.008803
NO _x	2.692399
СО	4.041546
PM 10	0.091521

Pollutant	Total Emissions (TONs)
PM 2.5	0.091423
Pb	0.000000
NH ₃	0.003192
CO ₂ e	849.9

22.1 Building Construction Phase

22.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 24 Number of Days: 0

22.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	48000
Height of Building (ft):	12
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC				
POVs	50.00	50.00	0	0	0	0	0				

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

22.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		

Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			
Welders Composite	Welders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

22.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23. Construction / Demolition

23.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Modify Hangars

- Activity Description:

Modification of Buildings 50 and 210 would occur in 2026.

It was assumed 25 percent of the total square footage of the hangars (Building 50 = approximately 52,500 square feet; Building 210 = approximately 46,000 square feet) would be construction to equate the renovations (98,500 square feet * 0.25 = 24,625 square feet). The height of the hangars was assumed to be 25 feet. Renovations would begin in January 2026 and last approximately 11 months.

It was assumed architectural coatings would be required for the entire facility (98,500 square feet) following the renovations. Architectural coating application would begin in December 2026 and last approximately 1 month.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)				
VOC	1.357297				
SO _x	0.004061				
NO _x	1.248297				
СО	1.863404				
PM 10	0.042210				

Pollutant	Total Emissions (TONs)
PM 2.5	0.042140
Pb	0.000000
NH ₃	0.001672
CO ₂ e	397.4

23.1 Building Construction Phase

23.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 11 Number of Days: 0

23.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	24625
Height of Building (ft):	25
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)								
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	50.00	50.00	0	0	0	0	0	

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

vendor rrips vender (mitalite (70)								
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	0	0	0	0	0	100.00	0	

23.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77	
Forklifts Composite	1								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449	
Generator Sets Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057	
Tractors/Loaders/B	ackhoes Co	mposite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	
Welders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

23.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23.2 Architectural Coatings Phase

23.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date	
Start Month:	12
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 1 Number of Days: 0

23.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information						
Building Category:	Non-Residential					
Total Square Footage (f	t²): 98500					
Number of Units:	N/A					

- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.2.3 Architectural Coatings Phase Emission Factor(s)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

- Worker Trips Emission Factors (grams/mile)

23.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

24. Construction / Demolition

24.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Antenna Farm

- Activity Description:

Construction of the antenna farm as part of the GBTS facility would occur in 2026.

It was assumed approximately 5,000 square feet would be trenched and excavated for installation of the antenna farm. Trenching/excavation would begin in January 2026 and last approximately 12 months. Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.234605
SO _x	0.005168
NO _x	1.079323
СО	1.988326
PM 10	0.634433

Pollutant	Total Emissions (TONs)
PM 2.5	0.037540
Pb	0.000000
NH ₃	0.000717
CO ₂ e	487.1

24.1 Trenching/Excavating Phase

24.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date			
Start Month: 1			
Start Quarter: 1			
Start Year: 2026			
- Phase Duration			
Number of Month: 12			
Number of Days: 0			
24.1.2 Trenching / Excavating Phase - General Trenching/Excavating Informa Area of Site to be Trenched/Excavat Amount of Material to be Hauled On Amount of Material to be Hauled Of	ation ed (ft ²): n-Site (yd ³):	5000 0 0	
- Trenching Default Settings			
Default Settings Used:	Yes		
Average Day(s) worked per week:	5 (default)		
- Construction Exhaust (default)			
Equipment Nar	ne		Numbe

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	(gruns, mic)								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983

MC 002.858 000.008	000.719 014.264	000.027 000.024	000.050 00395.027
--------------------	-----------------	-----------------	-------------------

24.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25. Construction / Demolition

25.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Squadron Operations Buildings Renovations

- Activity Description:

Squadron Operations Buildings Renovations (i.e., Buildings 307, 320, and 328) would occur in 2026.

It was assumed 25 percent of the total square footage of the buildings (Building 307 = approximately 13,000 square feet; Building 320 = approximately 78,500 square feet; Building 328 = approximately 45,000 square feet) would be construction to equate the renovations (136,500 square feet * 0.25 = 34,125 square feet). The height of the buildings was assumed to be 25 feet. Renovations would begin in January 2026 and last approximately 11 months.

It was assumed architectural coatings would be required for the entire facility (136,500 square feet) following the renovations. Architectural coating application would begin in December 2026 and last approximately 1 month.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	1.798520
SO _x	0.004078
NO _x	1.257903
СО	1.869855
PM 10	0.042386

Pollutant	Total Emissions (TONs)
PM 2.5	0.042299
Pb	0.000000
NH ₃	0.001806
CO ₂ e	402.6

25.1 Building Construction Phase

25.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 11 0

Number of Days:

25.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	34125
Height of Building (ft):	25
Number of Units:	N/A

- Building Construction Default Settings **Default Settings Used:** Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

25.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		

Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Generator Sets Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			
Welders Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

25.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)WT: Average Worker Round Trip Commute (mile)1.25: Conversion Factor Number of Construction Equipment to Number of WorksNE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25.2 Architectural Coatings Phase

25.2.1 Architectural Coatings Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 12
Start Quarter: 1
Start Year: 2026
```

- Phase Duration Number of Month: 1 Number of Days: 0

25.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 136500 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

25.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

		ion i actor							
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

25.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

26. Construction / Demolition

26.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Airfield Improvements

- Activity Description:

Airfield improvements would occur in 2026.

Airfield improvements would occur on an area totaling approximately 607,000 square feet. Improvements would begin in January 2026 and last approximately 12 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.278284
SO _x	0.003494
NO _x	1.492374
СО	2.040054
PM 10	0.081524

Pollutant	Total Emissions (TONs)
PM 2.5	0.081481
Pb	0.000000
NH ₃	0.001094
CO ₂ e	349.9

26.1 Paving Phase

26.1.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 12 Number of Days: 0

26.1.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 607000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Pavers Composite	1	8

Paving Equipment Composite	2	8
Rollers Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

26.1.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009	10	000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

26.1.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

27. Construction / Demolition

27.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Trim Pad

- Activity Description:

Construction of the trim pad would occur in 2026.

Excavation of existing pavement would occur on an area totaling approximately 25,000 square feet. Excavation would begin in January 2026 and last approximately 4 months.

Pavement for the new trim pad would be required for an area totaling approximately 25,000 square feet. Paving would begin in May 2026 and last approximately 8 months.

- Activity Start Date

Start Month:	1
Start Month:	2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.230958
SO _x	0.003847
NO _x	1.202020
СО	1.887355
PM 10	1.048948

Pollutant	Total Emissions (TONs)
PM 2.5	0.054127
Pb	0.000000
NH ₃	0.001203
CO_2e	367.8

27.1 Trenching/Excavating Phase

27.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration

Number of Month: 4 Number of Days: 0

.

27.1.2 Trenching / Excavating Phase Assumptions

General Trenching/Excavating Information Area of Site to be Trenched/Excavated (ft²): 25000 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

27.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

27.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

27.2 Paving Phase

27.2.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 5 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 8 Number of Days: 0

27.2.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 25000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	50.00	50.00	0	0	0	0	0	

27.2.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

27.2.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ PA: \mbox{ Paving Area (ft^2)} \\ 0.25: \mbox{ Thickness of Paving Area (ft)} \\ (1/27): \mbox{ Conversion Factor cubic feet to cubic yards (1 yd^3 / 27 ft^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1/HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

28. Construction / Demolition

28.1 General Information & Timeline Assumptions

Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: T-7A Explosive Component Storage

- Activity Description:

Construction of the explosive component storage facility would occur in 2026.

Site grading would occur on an area of approximately 0.35 acres (15,000 square feet). Site grading would begin in January 2026 and last approximately 2 months.

Trenching for site utilities would require approximately 250 feet of excavation and trenching for site fencing would require approximately 500 feet of excavation. A 3-foot trench width for utilities and 1-foot trench width for fencing was assumed, for a total of 1,250 square feet. Trenching would begin in March 2026 and last approximately 1 month.

Construction of the new storage facility would total approximately 7,200 square feet. The height of the storage facility was assumed to be 12 feet. Construction would begin in April 2026 and last approximately 6 months.

Architectural coatings would be applied to the facility, totaling 7,200 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

The facility would require concrete or gravel hardstands and an access roadway. Paving would occur on an area totaling approximately 25,000 square feet. Paving would begin November 2026 and last approximately 2 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.242628
SO _x	0.002995
NO _x	0.827269
CO	1.264223
PM 10	0.342648

Pollutant	Total Emissions (TONs)
PM 2.5	0.031751
Pb	0.000000
NH ₃	0.000833
CO ₂ e	291.3

28.1 Site Grading Phase

28.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 2 Number of Days: 0

28.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	15000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6

Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default) Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composit	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	s Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs) 20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day) ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

28.2 Trenching/Excavating Phase

28.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 3 Start Quarter: 1 Start Year: 2026

- Phase Duration	
Number of Month:	1
Number of Days:	0

28.2.2 Trenching / Excavating Phase Assumptions

General Trenching/Excavating Information
 Area of Site to be Trenched/Excavated (ft²): 1250
 Amount of Material to be Hauled On-Site (yd³): 0
 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction Equipment Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozen	Rubber Tired Dozers Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- venicie E	Anaust &	WUIKEI III	ps Emissio	li Factors (g	31 ams/ mnc	,			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

28.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{VE}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

28.3 Building Construction Phase

28.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 4 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 6 Number of Days: 0

28.3.2 Building Construction Phase Assumptions

- General Building Construction Information

- Building Category:Office or IndustrialArea of Building (ft²):7200Height of Building (ft):12Number of Units:N/A
- Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

28.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					7				
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ BA: \ Area \ of \ Building \ (ft^2) \\ BH: \ Height \ of \ Building \ (ft) \\ (0.42 \ / \ 1000): \ Conversion \ Factor \ ft^3 \ to \ trips \ (0.42 \ trip \ / \ 1000 \ ft^3) \\ HT: \ Average \ Hauling \ Truck \ Round \ Trip \ Commute \ (mile/trip) \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

28.4 Architectural Coatings Phase

28.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	10
Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 1 Number of Days: 0

28.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 7200 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

28.5 Paving Phase

28.5.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:11Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 2 Number of Days: 0

28.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 25000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.5.3 Paving Phase Emission Factor(s)

Graders Composite	Graders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction	Other Construction Equipment Composite										
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozen	rs Composit	te									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

29. Heating

29.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating/Cooling for New Facilities

- Activity Description:

Heating/cooling for new facilities would begin with the arrival of the first T-7A aircraft and crews, or approximately January 2030. Heating/cooling would be required for the following facilities: GBTS Facility - 34,000 square feet UMT Facility - 11,500 square feet Hush House - 24,111 square feet Addition to the Egress Shop - 3,400 square feet T-7A Explosive Component Storage - 7,200 square feet Addition to Building 905 - 1,036 square feet

Total area to be heated - 81,247 square feet

- Activity Start Date Start Month: 1

Start Year:	2030
-------------	------

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.015810
SO _x	0.001725
NO _x	0.287460
CO	0.241466
PM 10	0.021847

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.021847
Pb	0.000000
NH ₃	0.000000
CO ₂ e	346.1

29.2 Heating Assumptions

- Heating

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method
 - Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²):

81247 Natural Gas Commercial/Institutional (0.3 - 9.9 MMBtu/hr) 0.00105 0.0743

- Default Settings Used: Yes
- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)

29.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

29.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL} = FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant

2000: Conversion Factor pounds to tons

30. Heating

30.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Remove Heating/Cooling for Demolished Facilities

- Activity Description:

Heating/cooling for demolished facilities (Buildings 15 = approximately 1,000 square feet; Building 18 = approximately 250 square feet) no longer would be required starting in approximately January 2026.

- Activity Start Date

Start Month:1Start Year:2026

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.000311
SO _x	-0.000034
NO _x	-0.005649
СО	-0.004745
PM 10	-0.000429

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.000429
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-6.8

30.2 Heating Assumptions

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²): 1250 Natural Gas Commercial/Institutional (0.3 - 9.9 MMBtu/hr) 0.00105 0.0949

- Default Settings Used: Yes

- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)
- **30.3 Heating Emission Factor(s)**

⁻ Heating

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH3	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

30.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL} = FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

31. Personnel

31.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: Maximum Increase of 190 Personnel

- Activity Description:

Addition of 190 personnel during the T-7A and T-38C transition period (i.e., 2030 and 2031). Assumed all personnel commute daily.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2031

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.548963
SO _x	0.005708

Pollutant	Total Emissions (TONs)
PM 2.5	0.008553
Pb	0.000000

NO _x	0.323898
СО	7.752876
PM 10	0.009992

NH ₃	0.056079
CO ₂ e	792.1

31.2 Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	190
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

5 Days Per Week (default)
5 Days Per Week (default)
5 Days Per Week (default)
4 Days Per Week (default)
4 Days Per Month (default)

31.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

31.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

31.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year $VMT_P = NP \mbox{ * } WD \mbox{ * } AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

32. Personnel

32.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: Net Decrease of 60 Personnel

- Activity Description:

Net decrease of 60 personnel following T-38C withdrawal (i.e., 2032). Assumed all personnel commute daily.

- Activity Start Date Start Month: 1

Start Year: 2032

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.086678
SO _x	-0.000901
NO _x	-0.051142
CO	-1.224138
PM 10	-0.001578

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001350
Pb	0.000000
NH ₃	-0.008855
CO ₂ e	-125.1

32.2 Personnel Assumptions

Active Duty Personnel:	60
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule	
Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

32.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

32.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

32.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)

VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33. Construction / Demolition

33.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Addition to Building 905

- Activity Description:

Construction of the addition to Building 905 and parking area would occur in 2026.

Construction of the addition would total approximately 1,036 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in January 2026 and last approximately 9 months.

Architectural coatings would be applied to the addition, totaling 1,036 square feet. Architectural coating application would begin in October 2026 and last approximately 1 month.

Site grading for the parking area would occur on approximately 5,000 square feet. Site grading would begin in November 2026 and last approximately 1 month.

Paving for the parking area would occur on approximately 5,000 square feet. Paving would begin in December 2026 and last approximately 1 month.

- Activity Start Date

Start Month:	1
Start Month:	2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.133232
SO _x	0.002426
NO _x	0.614393
CO	1.013668
PM 10	0.071146

Pollutant	Total Emissions (TONs)
PM 2.5	0.021390
Pb	0.000000
NH ₃	0.000735
CO ₂ e	234.6

33.1 Site Grading Phase

33.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 1 Number of Days: 0

33.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	5000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings				
Default Settings Used:	Yes			
Average Day(s) worked per week:	5 (default)			

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89

Other Construction Equipment Composite											
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozers Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/B	ackhoes Co	mposite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33.2 Building Construction Phase

33.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 9 Number of Days: 0

33.2.2 Building Construction Phase Assumptions

- General Building Construc	tion Information
Building Category:	Office or Industrial
Area of Building (ft ²):	1036
Height of Building (ft):	20
Number of Units:	N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

33.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite	Cranes Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77				
Forklifts Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Tractors/Loaders/B	ackhoes Co	mposite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour)

2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

33.3 Architectural Coatings Phase

33.3.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 1 Number of Days: 0

33.3.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 1036 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.3.3 Architectural Coatings Phase Emission Factor(s)

			(B					·	
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

- Worker Trips Emission Factors (grams/mile)

33.3.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

33.4 Paving Phase

33.4.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 12 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 1 Number of Days: 0

33.4.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 5000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.4.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction Equipment Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozers Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					, 1	i IIII			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.4.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ PA: \ Paving \ Area \ (ft^2) \\ 0.25: \ Thickness \ of \ Paving \ Area \ (ft) \\ (1 \ / \ 27): \ Conversion \ Factor \ cubic \ feet \ to \ cubic \ yards \ (1 \ yd^3 \ / \ 27 \ ft^3) \\ HC: \ Average \ Hauling \ Truck \ Capacity \ (yd^3) \end{array}$

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:LAUGHLIN AFBState:TexasCounty(s):Val VerdeRegulatory Area(s):NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 3

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2026

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

2020

2026							
Pollutant	Action Emissions	INSIGNIFICAN	NCE INDICATOR				
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY	AREA						
VOC	5.466	250					
NOx	14.318	250					
СО	21.951	250					
SOx	0.049	250					
PM 10	14.076	250					
PM 2.5	0.539	250					
Pb	0.000	25	No				
NH3	0.015	250					
CO2e	4799.0						

Analysis Summary:

2027

2027							
Pollutant	Action Emissions	INSIGNIFICAN	CE INDICATOR				
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY	AREA						
VOC	1.963	250					
NOx	6.317	250					
СО	9.660	250					
SOx	0.021	250					
PM 10	0.219	250					
PM 2.5	0.219	250					
Pb	0.000	25	No				
NH3	0.009	250					

20120

2028						
Pollutant	Action Emissions	Action Emissions INSIGNIFICANCE INDICATOR				
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)			
NOT IN A REGULATORY	AREA					
VOC	0.000	250				
NOx	-0.006	250				
СО	-0.005	250				
SOx	0.000	250				
PM 10	0.000	250				
PM 2.5	0.000	250				
Pb	0.000	25	No			
NH3	0.000	250				
CO2e	-6.8					

2029

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	0.000	250		
NOx	-0.006	250		
СО	-0.005	250		
SOx	0.000	250		
PM 10	0.000	250		
PM 2.5	0.000	250		
Pb	0.000	25	No	
NH3	0.000	250		
CO2e	-6.8			

2030

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	34.021	250		
NOx	105.918	250		
СО	-122.523	250		
SOx	5.465	250		
PM 10	-3.883	250		
PM 2.5	-3.486	250		
Pb	0.000	25	No	
NH3	0.028	250		
CO2e	17374.0			

2031				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	81.796	250		
NOx	240.163	250		
СО	-215.833	250		
SOx	13.018	250		
PM 10	-7.036	250		
PM 2.5	-6.305	250		
Pb	0.000	25	No	
NH3	0.028	250		
CO2e	40211.3			

2032

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	81.435	250	
NOx	239.950	250	
СО	-220.933	250	
SOx	13.014	250	
PM 10	-7.042	250	
PM 2.5	-6.311	250	
Pb	0.000	25	No
NH3	-0.009	250	
CO2e	39690.2		

2033

	-		
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	85.305	250	
NOx	248.250	250	
СО	-213.092	250	
SOx	13.598	250	
PM 10	-6.873	250	
PM 2.5	-6.155	250	
Pb	0.000	25	No
NH3	-0.009	250	
CO2e	41425.7		

2034 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	85.305	250	
NOx	248.250	250	
CO	-213.092	250	
SOx	13.598	250	
PM 10	-6.873	250	
PM 2.5	-6.155	250	
Pb	0.000	25	No

NH3	-0.009	250	
CO2e	41425.7		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs.No further air assessment is needed.

mmA

Carolyn Hein, Contractor

3/31/2023 DATE

1. General Information

Action Location

Base: LAUGHLIN AFB
State: Texas
County(s): Val Verde
Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 3

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2026

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Laughlin AFB to prepare pilots to operate modern fourth and fifth generation aircraft. The Proposed Action is needed because current training practices with older T 38C aircraft do not prepare pilots adequately for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern, capable training platform with capabilities beyond those available with the T 38C. Additionally, training systems provided with the newer T 7A aircraft allow for enhanced and improved flight and simulator training. The T 7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T 7A recapitalization at Laughlin AFB would allow DAF to continue the geographically phased T 7A recapitalization sequence, ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2030 Add T-7As and LTOs
3.	Aircraft	2030 Add T-7A CPs
4.	Aircraft	2030 Increase T-7A Trim Test and Test Cell
5.	Aircraft	2030 Remove T-38C and LTOs
6.	Aircraft	2030 Remove T-38C CPs
7.	Aircraft	2030 Decrease T-38C Trim Test and Test Cell
8.	Aircraft	2031-2032 Add T-7As and LTOs
9.	Aircraft	2031-2032 Add T-7A CPs
10.	Aircraft	2031-2032 Increase T-7A Trim Test and Test Cell
11.	Aircraft	2031 Remove T-38C and LTOs
12.	Aircraft	2031 Remove T-38C CPs
13.	Aircraft	2031 Decrease T-38C Trim Test and Test Cell
14.	Aircraft	2033 Add T-7As and LTOs
15.	Aircraft	2033 Add T-7A CPs
16.	Aircraft	2033 Increase T-7A Trim Test and Test Cell
17.	Construction / Demolition	MILCON: Construct GBTS Facility
18.	Construction / Demolition	MILCON: Construct UMT Facility
19.	Construction / Demolition	MILCON: Construct Hush House
20.	Construction / Demolition	MILCON: Construct T-7A Shelters
21.	Construction / Demolition	MILCON: Addition to Egress Shop
22.	Construction / Demolition	MILCON: Construct Jet Blast Deflectors
23.	Construction / Demolition	FSRM: Modify Hangars
24.	Construction / Demolition	FSRM: Antenna Farm
25.	Construction / Demolition	FSRM: Squadron Operations Buildings Renovations
26.	Construction / Demolition	FSRM: Airfield Improvements
27.	Construction / Demolition	FSRM: Trim Pad
28.	Construction / Demolition	FSRM: T-7A Explosive Component Storage
29.	Heating	Heating/Cooling for New Facilities
30.	Heating	Remove Heating/Cooling for Demolished Facilities
31.	Personnel	Maximum Increase of 190 Personnel
32.	Personnel	Net Decrease of 60 Personnel
33.	Construction / Demolition	FSRM: Addition to Building 905

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 Add T-7As and LTOs

- Activity Description:

Starting in 2030, add 43 T-7As and 8,202 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	43.151970
SO _x	2.735378
NO _x	36.000795
СО	88.322929
PM 10	1.676115

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.575401
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7857.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	42.175892	PM 2.5	0.517547
SO _x	2.467139	Pb	0.000000
NO _x	28.526739	NH ₃	0.000000
CO	86.711655	CO ₂ e	7455.1
PM 10	0.583842		

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycles Number of Annual Trim Test(s) per Aircraf		43 8202 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

2.5 Aerospace Ground Equipment (AGE)

2.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 8202

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

2.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

2.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Add T-7A CPs

- Activity Description:

Starting in 2030, add 18,043 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	8.973498
SO _x	5.101430
NO _x	75.207874
CO	15.134200
PM 10	0.562659

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)			
VOC	0.000000			
SO _x	0.000000			
NO _x	0.000000			
СО	0.000000			
PM 10	0.000000			

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.480327
Pb	0.000000
NH ₃	0.000000
CO ₂ e	15418.7

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		43
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles for	or all Aircraft:	18043
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2030, add trim test and engine test cell for 43 T-7As.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.248041
SO _x	0.081385
NO _x	1.352083
СО	3.933897
PM 10	0.090418

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.081021
Pb	0.000000
NH ₃	0.000000
CO ₂ e	246.0

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

Engine Model: Primary Function: Aircraft has After burn:	T-7A F404-GE-102 Trainer Yes 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Sur Original Aircraft Name: Original Engine Name:	rogate? No
4.2.2 Aircraft & Engines Er	nission Factor(s)
- Aircraft & Engine Emissions Proprietary Information. Co engine's Emission Factors.	Factors (lb/1000lb fuel) ontact Air Quality Subject Matter Expert for More Information regarding this
4.3 Aircraft Engine Test Ce	11
4.3.1 Aircraft Engine Test (Cell Assumptions
- Engine Test Cell Total Number of Aircraft I	Engines Tested Annually: 43
- Default Settings Used: Ye	28
- Annual Run-ups / Test Durat Annual Run-ups (Per Airc Idle Duration (mins): Approach Duration (mins) Intermediate Duration (mi Military Duration (mins): After Burner Duration (mi	raft Engine): 1 (default) 0 (default) : 4.97 (default) ins): 10.45 (default) 6.14 (default)
4.3.2 Aircraft Engine Test (Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

4.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine)

2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C and LTOs

- Activity Description: Starting in 2030, remove 32 T-38Cs and 4,401 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-13.840498
SO _x	-1.321792
NO _x	-5.937370
СО	-149.215148
PM 10	-4.236465

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.851422
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3451.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-13.316758
SO _x	-1.177861
NO _x	-1.926967
CO	-148.350577
PM 10	-3.650377

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.283802
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3235.3

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		32
Flight Operation Cycle Type:	LTO (Landing and Takeoff)	
Number of Annual Flight Operation Cycles for al	l Aircraft:	4401
Number of Annual Trim Test(s) per Aircraft:		0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	16.51
Approach [Approach] (mins):	3.89
Climb Out [Intermediate] (mins):	0.58
Takeoff [Military] (mins):	0.55
Takeoff [After Burn] (mins):	0.25

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary rower c	(aciault)			
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

- Auxiliary Power Unit (APU) (default)

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5.5 Aerospace Ground Equipment (AGE)

5.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes
- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 4401

- Aerospace Ground Equipment (AGE) (default)

Total Number of AGE	Operation Hours for Each LTO	Exempt Source?	AGE Type	Designation
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

5.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

5.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C CPs
- Activity Description: Starting in 2030, remove 9,682 T-38C CPs.
- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.519087
SO _x	-1.061133
NO _x	-0.933638
СО	-81.020664
PM 10	-1.927323

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant Emissions Per Year (TONs) PM 2.5 -1.729902 Pb 0.000000 NH₃ 0.000000 CO₂e -3207.2

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine		
Aircraft Designation:	T-38C	
Engine Model:	J85-GE-5R	
Primary Function:	Trainer	
Aircraft has After burn:	Yes	
Number of Engines:	2	
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:		No
Original Engine Name:		

6.2.2 Aircraft & Engines Emission Factor(s)

	iigine Emissie	JIIS I actors	(10/1000101)	ucij				
	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:			32
Flight Operation Cycl	e Type:	CP (Close Pattern)	
Number of Annual Fli	ight Operation	Cycles for all Aircraft:	9682
Number of Annual Tr	im Test(s) per	Aircraft:	0
- Default Settings Used:	No		

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	3.59
Climb Out [Intermediate] (mins):	2.66
Takeoff [Military] (mins):	0.42
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $\Delta EM_{res} = (TIM / 60) * (EC / 1000) * EE * NE * EOC / 2000$

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Decrease T-38C Trim Test and Test Cell

- Activity Description:

Starting in 2030, remove trim test and engine test cell for 32 T-38Cs.

- Activity Start Date Start Month: 1

Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.282907
SO _x	-0.074500
NO _x	-0.215007
CO	-3.791705
PM 10	-0.075009

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.067420
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-225.2

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

7.3 Aircraft Engine Test Cell

7.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	64

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

7.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

7.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Val Verde

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031-2032 Add T-7As and LTOs

- Activity Description:

Starting in 2031, add 34 T-7As and 10,328 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2031
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	54.337179
SO _x	3.444402
NO _x	45.332383
CO	111.216680
PM 10	2.110572

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.983753
Pb	0.000000
NH ₃	0.000000
CO ₂ e	9894.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	53.108097	PM 2.5	0.651697
SO _x	3.106634	Pb	0.000000
NO _x	35.921014	NH ₃	0.000000
СО	109.187755	CO ₂ e	9387.5
PM 10	0.735177		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycles f Number of Annual Trim Test(s) per Aircraft		34 10328 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

12
27
9
9
3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8.5 Aerospace Ground Equipment (AGE)

8.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 10328

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

8.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

8.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031-2032 Add T-7A CPs

- Activity Description:

Starting in 2031, add 22,721 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	11.300052
SO _x	6.424075
NO _x	94.706983
CO	19.058037
PM 10	0.708539

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)			
VOC	0.000000			
SO _x	0.000000			
NO _x	0.000000			
СО	0.000000			
PM 10	0.000000			

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.604861
Pb	0.000000
NH ₃	0.000000
CO ₂ e	19416.3

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cycles f	or all Aircraft:	22721
Number of Annual Trim Test(s) per Aircraft	:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10. Aircraft

10.1 General Information & Timeline Assumptions

```
- Add or Remove Activity from Baseline? Add
```

- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031-2032 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2031, add trim test and engine test cell for 34 T-7As.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)				
VOC	0.196125				
SO _x	0.064351				
NO _x	1.069089				
СО	3.110523				
PM 10	0.071493				

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.064063
Pb	0.000000
NH ₃	0.000000
CO ₂ e	194.5

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

 Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404-GE Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1 	-102
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? Original Aircraft Name: Original Engine Name:	No
10.2.2 Aircraft & Engines Emission	Factor(s)
- Aircraft & Engine Emissions Factors Proprietary Information. Contact Air engine's Emission Factors.	(Ib/1000Ib fuel) Quality Subject Matter Expert for More Information regarding this
10.3 Aircraft Engine Test Cell	
10.3.1 Aircraft Engine Test Cell As	sumptions
- Engine Test Cell Total Number of Aircraft Engines '	Tested Annually: 34
- Default Settings Used: Yes	
- Annual Run-ups / Test Durations Annual Run-ups (Per Aircraft Eng Idle Duration (mins): Approach Duration (mins): Intermediate Duration (mins): Military Duration (mins): After Burner Duration (mins):	ine): 1 (default) 0 (default) 4.97 (default) 10.45 (default) 6.14 (default) 2.04 (default)
10.3.2 Aircraft Engine Test Cell En	nission Factor(s)
- See Aircraft & Engines Emission Fact	or(s)

10.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine)

2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Remove T-38C and LTOs
- Activity Description: Starting in 2031, remove 31 T-38Cs and 4,263 LTOs.
- Activity Start Date Start Month: 1 Start Year: 2031
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-13.406508
SO _x	-1.280345
NO _x	-5.751194
CO	-144.536282
PM 10	-4.103624

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.730654
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3343.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-12.899191
SO _x	-1.140927
NO _x	-1.866544
CO	-143.698820
PM 10	-3.535914

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.180833
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3133.9

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LTO (Landing and Takeoff)	
Number of Annual Flight Operation Cycles for al	l Aircraft:	4263
Number of Annual Trim Test(s) per Aircraft:		0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	16.51
Approach [Approach] (mins):	3.89
Climb Out [Intermediate] (mins):	0.58
Takeoff [Military] (mins):	0.55
Takeoff [After Burn] (mins):	0.25

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Muximary rower e	(uclault)			
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	-	
	LTO			

- Auxiliary Power Unit (APU) (default)

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11.5 Aerospace Ground Equipment (AGE)

11.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes
- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 4263

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

11.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

11.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Remove T-38C CPs
- Activity Description: Starting in 2031, remove 9,379 T-38C CPs.
- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.377661
SO _x	-1.027924
NO _x	-0.904420
СО	-78.485107
PM 10	-1.867007

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

12.2 Aircraft & Engines

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.675764
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3106.8

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine		
Aircraft Designation:	T-38C	
Engine Model:	J85-GE-5R	
Primary Function:	Trainer	
Aircraft has After burn:	Yes	
Number of Engines:	2	
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:		No

12.2.2 Aircraft & Engines Emission Factor(s)

The chart & Engline Emissions I actors (10/100010 fact)								
	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	CP (Close Pattern)	
Number of Annual Flight Operation Cyc	cles for all Aircraft:	9379
Number of Annual Trim Test(s) per Airo	eraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	3.59
Climb Out [Intermediate] (mins):	2.66
Takeoff [Military] (mins):	0.42
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $\Delta EM_{res} = (TIM / 60) * (EC / 1000) * EE * NE * EOC / 2000$

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2031 Decrease T-38C Trim Test and Test Cell

- Activity Description:

Starting in 2031, remove trim test and engine test cell for 31 T-38Cs.

- Activity Start Date Start Month: 1

Start Year:	2031
-------------	------

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.274066
SO _x	-0.072172
NO _x	-0.208288
CO	-3.673214
PM 10	-0.072665

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.065313
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-218.1

13.2 Aircraft & Engines

13.2.1 Aircraft & Engines Assumptions

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

13.3 Aircraft Engine Test Cell

13.3.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	62

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	4.97 (default)
Intermediate Duration (mins):	10.45 (default)
Military Duration (mins):	6.14 (default)
After Burner Duration (mins):	2.04 (default)

13.3.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

13.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Val Verde

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 Add T-7As and LTOs

- Activity Description:

Starting in 2033, add 2 T-7As and 607 LTOs.

- Activity Start Date Start Month: 1 Start Year: 2033
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	3.193519
SO _x	0.202435
NO _x	2.664287
CO	6.536457
PM 10	0.124043

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.116590
Pb	0.000000
NH ₃	0.000000
CO ₂ e	581.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	3.121283
SO _x	0.182584
NO _x	2.111160
CO	6.417212
PM 10	0.043208

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.038302
Pb	0.000000
NH ₃	0.000000
CO ₂ e	551.7

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycle Number of Annual Trim Test(s) per Aircra		2 607 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	12.42	
Approach [Approach] (mins):	3.91	
Climb Out [Intermediate] (mins):	0.58	
Takeoff [Military] (mins):	0.79	
Takeoff [After Burn] (mins):	0.01	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

12
27
9
9
3

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14.5 Aerospace Ground Equipment (AGE)

14.5.1 Aerospace Ground Equipment (AGE) Assumptions

- Default Settings Used: Yes

- AGE Usage

Number of Annual LTO (Landing and Take-off) cycles for AGE: 607

- Aerospace Ground Equipment (AGE) (default)

Total Number of	Operation Hours	Exempt	AGE Type	Designation
AGE	for Each LTO	Source?		
1	0.5	No	Air Compressor	MC-1A - 18.4hp
1	0.17	No	Generator Set	A/M32A-86D
1	0.17	No	Heater	H1
1	0.5	No	Hydraulic Test Stand	MJ-1-1
1	1	No	Light Cart	TF-1

14.5.2 Aerospace Ground Equipment (AGE) Emission Factor(s)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
MC-1A - 18.4hp	1.1	0.267	0.008	0.419	0.267	0.071	0.068	24.8
A/M32A-86D	6.5	0.294	0.046	6.102	0.457	0.091	0.089	147.0
H1	0.4	0.100	0.011	0.160	0.180	0.006	0.006	8.9
MJ-1-1	2.5	0.026	0.018	0.757	0.043	0.109	0.105	57.2
TF-1	0.0	0.025	0.043	0.170	0.130	0.160	0.155	30.7

- Aerospace Ground Equipment (AGE) Emission Factor (lb/hr)

14.5.3 Aerospace Ground Equipment (AGE) Formula(s)

- Aerospace Ground Equipment (AGE) Emissions per Year

 $AGE_{POL} = AGE * OH * LTO * EF_{POL} / 2000$

AGE_{POL}: Aerospace Ground Equipment (AGE) Emissions per Pollutant (TONs) AGE: Total Number of Aerospace Ground Equipment OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 Add T-7A CPs

- Activity Description:

Starting in 2033, add 1,337 T-7A CPs.

- Activity Start Date

Start Month:	1
Start Year:	2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.664943
SO _x	0.378020
NO _x	5.572961
CO	1.121456
PM 10	0.041693

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)		
VOC	0.000000		
SO _x	0.000000		
NO _x	0.000000		
СО	0.000000		
PM 10	0.000000		

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035593
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1142.5

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

0 0

15.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		2
Flight Operation Cycle Type: CP (Close Pattern)		
Number of Annual Flight Operation Cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	3.57	
Climb Out [Intermediate] (mins):	2.63	
Takeoff [Military] (mins):	0.46	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2033 Increase T-7A Trim Test and Test Cell

- Activity Description:

Starting in 2033, add trim test and engine test cell for 2 T-7As.

- Activity Start Date

Start Month:1Start Year:2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.011537
SO _x	0.003785
NO _x	0.062888
СО	0.182972
PM 10	0.004205

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.003768
Pb	0.000000
NH ₃	0.000000
CO ₂ e	11.4

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404-C Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1	
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate Original Aircraft Name: Original Engine Name:	? No
16.2.2 Aircraft & Engines Emissi	on Factor(s)
- Aircraft & Engine Emissions Factor Proprietary Information. Contact A engine's Emission Factors.	rs (lb/1000lb fuel) Air Quality Subject Matter Expert for More Information regarding this
16.3 Aircraft Engine Test Cell	
16.3.1 Aircraft Engine Test Cell A	Assumptions
- Engine Test Cell Total Number of Aircraft Engine	es Tested Annually: 2
- Default Settings Used: Yes	
- Annual Run-ups / Test Durations Annual Run-ups (Per Aircraft En Idle Duration (mins): Approach Duration (mins): Intermediate Duration (mins): Military Duration (mins): After Burner Duration (mins):	ngine): 1 (default) 0 (default) 4.97 (default) 10.45 (default) 6.14 (default) 2.04 (default)
16.3.2 Aircraft Engine Test Cell I	Emission Factor(s)
- See Aircraft & Engines Emission Fa	actor(s)

16.3.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine)

2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

17. Construction / Demolition

17.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct GBTS Facility

- Activity Description:

Construction of the GBTS Facility (34,000 square feet) would occur from 2026 through 2027.

Site grading would occur on an area of approximately 3.5 acres (152,000 square feet). Site grading would begin in January 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 1,500 feet of excavation. A 3-foot trench width for utilities was assumed, for a total of 4,500 square feet. Trenching would begin in May 2026 and last approximately 2 months.

Construction of the new GBTS facility would total approximately 34,000 square feet. The height of the GBTS facility was assumed to be 15 feet. Construction would begin in July 2026 and last approximately 15 months.

Architectural coatings would be applied to the facility, totaling 34,000 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, parking areas, and roadways would occur on an area totaling approximately 35,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date

Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.884072

Pollutant	Total Emissions (TONs)
PM 2.5	0.099416

SO _x	0.009094
NO _x	2.754339
СО	3.972870
PM 10	6.237396

Pb	0.000000
NH ₃	0.002748
CO ₂ e	883.7

17.1 Site Grading Phase

17.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 4 Number of Days: 0

17.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	152000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	8
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	8
Tractors/Loaders/Backhoes Composite	2	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.1.3 Site Grading Phase Emission Factor(s)

Graders Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction	Other Construction Equipment Composite										
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozen	rs Composit	te									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/B	ackhoes Co	mposite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

17.2 Trenching/Excavating Phase

17.2.1 Trenching / Excavating Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 5
Start Quarter: 1
Start Year: 2026
```

- Phase Duration Number of Month: 2 Number of Days: 0

17.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	4500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8

Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	rs Composit	te								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/B	ackhoes Co	mposite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

17.3 Building Construction Phase

17.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1

Start Year: 2026

- Phase Duration Number of Month: 15 Number of Days: 0

17.3.2 Building Construction Phase Assumptions

- General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 34000 Height of Building (ft): 15 Number of Units: N/A
- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

17.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite										

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/B	ackhoes Co	mposite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

17.4 Architectural Coatings Phase

17.4.1 Architectural Coatings Phase Timeline Assumptions

Phase Start Date	
Start Month:	10
Start Quarter:	1
Start Year:	2027

_

- Phase Duration Number of Month: 1 Number of Days: 0

17.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 34000 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC			
POVs	50.00	50.00	0	0	0	0	0			

17.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

17.5 Paving Phase

17.5.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:	11
Start Quarter:	1
Start Year:	2027

- Phase Duration

Number of Month: 2 Number of Days: 0

17.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 35000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

17.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction Equipment Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozers Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	

Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
------------------	--------	--------	--------	--------	--------	--------	--------	--------

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	· enere Exhaust & () of her Trips Enission Tuetors (gruns, nine)								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

17.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

18. Construction / Demolition

18.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct UMT Facility

- Activity Description:

Construction of the UMT Facility (11,500 square feet) would occur from 2026 through 2027.

Site grading would occur on an area of approximately 0.8 acres (35,000 square feet). Site grading would begin in January 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 1,500 feet of excavation. A 3-foot trench width for utilities was assumed, for a total of 4,500 square feet. Trenching would begin in May 2026 and last approximately 2 months.

Construction of the new UMT facility would total approximately 11,500 square feet. The height of the UMT facility was assumed to be 15 feet. Construction would begin in July 2026 and last approximately 15 months.

Architectural coatings would be applied to the facility, totaling 11,500 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, sidewalks and roadways would occur on an area totaling approximately 10,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.430947
SO _x	0.005936
NO _x	1.523831
СО	2.399582
PM 10	1.536463

Pollutant	Total Emissions (TONs)
PM 2.5	0.054174
Pb	0.000000
NH ₃	0.001575
CO ₂ e	576.5

18.1 Site Grading Phase

18.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 4 Number of Days: 0

18.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	35000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Equipment	t Composite	e						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozer	s Composit	te							
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)

HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

18.2 Trenching/Excavating Phase

18.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 5 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 2 Number of Days: 0

18.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	4500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Equipment	t Composite	e						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozen	s Composi	te							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

18.3 Building Construction Phase

18.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 15 Number of Days: 0

18.3.2 Building Construction Phase Assumptions

General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 11500 Height of Building (ft): 15 Number of Units: N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

18.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77

Forklifts Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

18.4 Architectural Coatings Phase

18.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 1 Number of Days: 0

18.4.2 Architectural Coatings Phase Assumptions

```
    General Architectural Coatings Information
Building Category: Non-Residential
Total Square Footage (ft<sup>2</sup>): 11500
Number of Units: N/A
```

- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

18.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

18.5 Paving Phase

18.5.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2027

- Phase Duration

Number of Month:	2
Number of Days:	0

18.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 10000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

18.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite		· · · · · ·						
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	s Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336

HDGV	000.890	000.006	000.817	013.497	000.022	000.020	000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002	000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003	000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038	000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020	000.054	00389.005

18.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

19. Construction / Demolition

19.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Hush House

- Activity Description:

Construction of the Hush House (24,111 square feet) would occur from 2026 through 2027.

Demolition would include Building 15 (approximately 1,000 square feet) and Building 18 (approximately 250 square feet). The height of the buildings was assumed to be 15 feet. Demolition would begin in January 2026 and last approximately 3 months.

Site grading would occur on an area of approximately 0.6 acres (25,000 square feet) for the Hush House site and approximately 0.6 acres (25,000 square feet) for the road alteration. Grading also would be required for removal of the existing road (25,000 square feet), for a total of approximately 75,000 square feet. Site grading would begin in April 2026 and last approximately 4 months.

Trenching for site utilities would require approximately 100 feet of excavation. A 3-foot trench width for utilities was assumed. Excavation of the existing roadway also would be required (25,000 square feet). Total trenching/excavation area would be 25,300 square feet. Trenching would begin in August 2026 and last approximately 2 months.

Construction of the new Hush House would total approximately 24,111 square feet. The height of the Hush House was assumed to be 20 feet. Construction would begin in October 2026 and last approximately 12 months.

Architectural coatings would be applied to the facility, totaling 24,111 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

Paving for driveways, sidewalks and roadways would occur on an area totaling approximately 22,000 square feet. Paving would begin November 2027 and last approximately 2 months.

- Activity Start Date Start Month: 1

Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.708530
SO _x	0.007976
NO _x	2.413391
СО	3.529440
PM 10	3.579196

Pollutant	Total Emissions (TONs)
PM 2.5	0.087421
Pb	0.000000
NH ₃	0.002512
CO ₂ e	777.0

19.1 Demolition Phase

19.1.1 Demolition Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1

Start Year:

- Phase Duration

Number of Month: 3 Number of Days: 0

19.1.2 Demolition Phase Assumptions

2026

- General Demolition Information
 Area of Building to be demolished (ft²): 1250
 Height of Building to be demolished (ft): 15
- Default Settings Used: Yes
- Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Concrete/Industrial Saws Composite	1	8
Rubber Tired Dozers Composite	1	1
Tractors/Loaders/Backhoes Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.1.3 Demolition Phase Emission Factor(s)

Concrete/Industrial Saws Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539
Rubber Tired Dozen	Rubber Tired Dozers Composite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) * 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.2 Site Grading Phase

19.2.1 Site Grading Phase Timeline Assumptions

Phase Start Date	
Start Month:	4
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 4 Number of Days: 0

19.2.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	75000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0
- Site Grading Default Settings	
Default Settings Used: Yes	

Average Day(s) worked per week:	5 (default)
i i ei uge Dug(e) werneu per weene	2 (4214410)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	

Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

veniere Exhause veniere Minture (70)										
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC			
POVs	0	0	0	0	0	100.00	0			

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.2.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Other Construction Equipment Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozer	s Composi	te							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.2.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \mbox{ Vehicle Emissions (TONs)} \\ VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ 0.002205: \mbox{ Conversion Factor grams to pounds} \\ EF_{POL}: \mbox{ Emission Factor for Pollutant (grams/mile)} \\ VM: \mbox{ Vehicle Exhaust On Road Vehicle Mixture (%)} \\ 2000: \mbox{ Conversion Factor pounds to tons} \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.3 Trenching/Excavating Phase

19.3.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date

Start Month:	8
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 2

Number of Days: 0

19.3.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²): 25	5300
Amount of Material to be Hauled On-Site (yd ³): 0	
Amount of Material to be Hauled Off-Site (yd ³): 0	

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.3.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	rs Composi	te								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/B	ackhoes Co	mposite								

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.3.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

19.4 Building Construction Phase

19.4.1 Building Construction Phase Timeline Assumptions

Phase Start Date	
Start Month:	10
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 12 Number of Days: 0

19.4.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:Office or IndustrialArea of Building (ft²):24111Height of Building (ft):20Number of Units:N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

LDGV LDGT HDGV	LDDV LDDT	HDDV MC	
----------------	-----------	---------	--

POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

19.4.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Generator Sets Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057			
Tractors/Loaders/Ba	ackhoes Co	mposite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			
Welders Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.4.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours)

EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

19.5 Architectural Coatings Phase

19.5.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 1 Number of Days: 0

19.5.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 24111 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.5.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.5.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)

800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

19.6 Paving Phase

19.6.1 Paving Phase Timeline Assumptions

- Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2027

- Phase Duration Number of Month: 2 Number of Days: 0

19.6.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 22000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

- Average Hauling Truck Round Trip Commute (mile): 20 (default)
- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

19.6.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	s Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

19.6.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) PA: Paving Area (ft²) 0.25: Thickness of Paving Area (ft)

(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

20. Construction / Demolition

20.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct T-7A Shelters

- Activity Description:

Construction of 60 aircraft shelters (sunshades) would occur from 2026 through 2027.

Demolition would be required for the existing T-38C shelters. Demolition would include removal of 48 sunshades totaling approximately 150,000 square feet. Demolition would begin in January 2026 and last approximately 12 months.

Construction would include installation of 60 sunshades totaling approximately 187,500 square feet. The height of all sunshades were assumed to be 15 feet. Construction would begin in July 2026 and last approximately 12 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.408695
SO _x	0.007881
NO _x	2.482649
CO	3.834864
PM 10	0.554441

Pollutant	Total Emissions (TONs)
PM 2.5	0.081604
Pb	0.000000
NH ₃	0.004652
CO ₂ e	821.9

20.1 Demolition Phase

20.1.1 Demolition Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 12 Number of Days: 0

20.1.2 Demolition Phase Assumptions

General Demolition Information
 Area of Building to be demolished (ft²): 150000
 Height of Building to be demolished (ft): 15

- Default Settings Used: Yes

- Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day		
Concrete/Industrial Saws Composite	1	8		
Rubber Tired Dozers Composite	1	1		
Tractors/Loaders/Backhoes Composite	3	8		

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

20.1.3 Demolition Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Concrete/Industrial Saws Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539		
Rubber Tired Dozen	Rubber Tired Dozers Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

20.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment

WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) = 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

20.2 Building Construction Phase

20.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 12

Number of Days: 0

20.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	187500
Height of Building (ft):	15
Number of Units:	N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

20.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Composite								

Average Hauling Truck Round Trip Commute (mile): 20 (default)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/Ba	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					-	/			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

20.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days) WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21. Construction / Demolition

21.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Addition to Egress Shop

- Activity Description:

Construction of the addition to the Egress Shop would occur from 2026 through 2027.

Construction of the Egress Shop addition would total approximately 3,400 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in January 2026 and last approximately 23 months.

Architectural coatings would be applied to the addition, totaling 3,400 square feet. Architectural coating application would begin in December 2027 and last approximately 1 month.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.255801
SO _x	0.004627
NO _x	1.057743
СО	1.914952
PM 10	0.033559

Pollutant	Total Emissions (TONs)
PM 2.5	0.033527
Pb	0.000000
NH ₃	0.001412
CO ₂ e	445.3

21.1 Building Construction Phase

21.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 23 Number of Days: 0

21.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	3400
Height of Building (ft):	20
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

21.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77	
Forklifts Composite	Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449	
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003	10	000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

21.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ BA: \ Area \ of \ Building \ (ft^2) \\ BH: \ Height \ of \ Building \ (ft) \\ (0.42 \ / \ 1000): \ Conversion \ Factor \ ft^3 \ to \ trips \ (0.42 \ trip \ / \ 1000 \ ft^3) \\ HT: \ Average \ Hauling \ Truck \ Round \ Trip \ Commute \ (mile/trip) \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21.2 Architectural Coatings Phase

21.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	12
Start Quarter:	1
Start Year:	2027

- Phase Duration

Number of Month: 1 Number of Days: 0

21.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 3400 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

21.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

21.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

22. Construction / Demolition

22.1 General Information & Timeline Assumptions

Activity Location
 County: Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Jet Blast Deflectors

- Activity Description:

Construction of the jet blast deflectors would occur from 2026 through 2027.

Construction of the deflectors would total approximately 48,000 square feet. The high of the deflectors was assumed to be 12 feet. Construction would begin in January 2026 and last approximately 24 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	0
End Month:	2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.466869
SO _x	0.008803
NO _x	2.692399
СО	4.041546
PM 10	0.091521

Pollutant	Total Emissions (TONs)
PM 2.5	0.091423
Pb	0.000000
NH ₃	0.003192
CO ₂ e	849.9

22.1 Building Construction Phase

22.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 24 Number of Days: 0

22.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	48000
Height of Building (ft):	12
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

tt of mer 111									
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC		
POVs	50.00	50.00	0	0	0	0	0		

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

22.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e

Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

22.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23. Construction / Demolition

23.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Modify Hangars

- Activity Description:

Modification of Buildings 50 and 210 would occur in 2026.

It was assumed 25 percent of the total square footage of the hangars (Building 50 = approximately 52,500 square feet; Building 210 = approximately 46,000 square feet) would be construction to equate the renovations (98,500 square feet * 0.25 = 24,625 square feet). The height of the hangars was assumed to be 25 feet. Renovations would begin in January 2026 and last approximately 11 months.

It was assumed architectural coatings would be required for the entire facility (98,500 square feet) following the renovations. Architectural coating application would begin in December 2026 and last approximately 1 month.

- Activity Start Date Start Month: 1 Start Month: 2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	1.357297
SO _x	0.004061
NO _x	1.248297
СО	1.863404
PM 10	0.042210

Pollutant	Total Emissions (TONs)
PM 2.5	0.042140
Pb	0.000000
NH ₃	0.001672
CO ₂ e	397.4

23.1 Building Construction Phase

23.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 11 Number of Days: 0

23.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	24625
Height of Building (ft):	25
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)								
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	50.00	50.00	0	0	0	0	0	

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

venuor rrips venuere mature (70)									
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC		
POVs	0	0	0	0	0	100.00	0		

23.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77	
Forklifts Composite	1								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449	
Generator Sets Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057	
Tractors/Loaders/B	ackhoes Co	mposite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	
Welders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

23.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23.2 Architectural Coatings Phase

23.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date	
Start Month:	12
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 1 Number of Days: 0

23.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information							
Building Category:	Non-Residential						
Total Square Footage (:	ft ²): 98500						
Number of Units:	N/A						

- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips Average Worker Round Trip Commute (mile):

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC			
POVs	50.00	50.00	0	0	0	0	0			

20 (default)

23.2.3 Architectural Coatings Phase Emission Factor(s)

- worker imps Emission ractors (grams, mile)									
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

- Worker Trips Emission Factors (grams/mile)

23.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

24. Construction / Demolition

24.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Antenna Farm

- Activity Description:

Construction of the antenna farm as part of the GBTS facility would occur in 2026.

It was assumed approximately 5,000 square feet would be trenched and excavated for installation of the antenna farm. Trenching/excavation would begin in January 2026 and last approximately 12 months. Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.234605
SO _x	0.005168
NO _x	1.079323
СО	1.988326
PM 10	0.634433

Pollutant	Total Emissions (TONs)
PM 2.5	0.037540
Pb	0.000000
NH ₃	0.000717
CO ₂ e	487.1

24.1 Trenching/Excavating Phase

24.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date			
Start Month: 1			
Start Quarter: 1			
Start Year: 2026			
- Phase Duration			
Number of Month: 1	2		
Number of Days: 0			
- General Trenching/Excav Area of Site to be Trer Amount of Material to		5000 0 0	
- Trenching Default Setting	gs		
Default Settings Used:			
Average Day(s) worke	d per week: 5 (default)		
- Construction Exhaust (do	efault)		
E	quipment Name		Numbe

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

			Po Linisoro.			,			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983

MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027
----	---------	---------	---------	---------	---------	---------	--	---------	-----------

24.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25. Construction / Demolition

25.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Squadron Operations Buildings Renovations

- Activity Description:

Squadron Operations Buildings Renovations (i.e., Buildings 307, 320, and 328) would occur in 2026.

It was assumed 25 percent of the total square footage of the buildings (Building 307 = approximately 13,000 square feet; Building 320 = approximately 78,500 square feet; Building 328 = approximately 45,000 square feet) would be construction to equate the renovations (136,500 square feet * 0.25 = 34,125 square feet). The height of the buildings was assumed to be 25 feet. Renovations would begin in January 2026 and last approximately 11 months.

It was assumed architectural coatings would be required for the entire facility (136,500 square feet) following the renovations. Architectural coating application would begin in December 2026 and last approximately 1 month.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	1.798520
SO _x	0.004078
NO _x	1.257903
CO	1.869855
PM 10	0.042386

Pollutant	Total Emissions (TONs)
PM 2.5	0.042299
Pb	0.000000
NH ₃	0.001806
CO ₂ e	402.6

25.1 Building Construction Phase

25.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 11 0

Number of Days:

25.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	34125
Height of Building (ft):	25
Number of Units:	N/A

- Building Construction Default Settings **Default Settings Used:** Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

25.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e

Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Com	posite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

25.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)WT: Average Worker Round Trip Commute (mile)1.25: Conversion Factor Number of Construction Equipment to Number of WorksNE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25.2 Architectural Coatings Phase

25.2.1 Architectural Coatings Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 12
Start Quarter: 1
Start Year: 2026
```

- Phase Duration Number of Month: 1 Number of Days: 0

25.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 136500 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

25.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

		ion i actor							
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

25.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

26. Construction / Demolition

26.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Airfield Improvements

- Activity Description:

Airfield improvements would occur in 2026.

Airfield improvements would occur on an area totaling approximately 607,000 square feet. Improvements would begin in January 2026 and last approximately 12 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.278284
SO _x	0.003494
NO _x	1.492374
СО	2.040054
PM 10	0.081524

Pollutant	Total Emissions (TONs)
PM 2.5	0.081481
Pb	0.000000
NH ₃	0.001094
CO ₂ e	349.9

26.1 Paving Phase

26.1.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 12 Number of Days: 0

26.1.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 607000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Pavers Composite	1	8

Paving Equipment Composite	2	8
Rollers Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

26.1.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009	10	000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

26.1.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

27. Construction / Demolition

27.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Trim Pad

- Activity Description:

Construction of the trim pad would occur in 2026.

Excavation of existing pavement would occur on an area totaling approximately 25,000 square feet. Excavation would begin in January 2026 and last approximately 4 months.

Pavement for the new trim pad would be required for an area totaling approximately 25,000 square feet. Paving would begin in May 2026 and last approximately 8 months.

- Activity Start Date

Start Month:	1
Start Month:	2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.230958
SO _x	0.003847
NO _x	1.202020
СО	1.887355
PM 10	1.048948

Pollutant	Total Emissions (TONs)
PM 2.5	0.054127
Pb	0.000000
NH ₃	0.001203
CO_2e	367.8

27.1 Trenching/Excavating Phase

27.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration

Number of Month: 4 Number of Days: 0

.

27.1.2 Trenching / Excavating Phase Assumptions

General Trenching/Excavating Information Area of Site to be Trenched/Excavated (ft²): 25000 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

27.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

27.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

27.2 Paving Phase

27.2.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 5 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 8 Number of Days: 0

27.2.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 25000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	IDOU	IDOT	IID GU	IDDU	IDDT	IIDDI	MC
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

27.2.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.534	000.007	000.582	004.759	000.010	000.009		000.034	00373.409
LDGT	000.732	000.010	001.014	007.911	000.011	000.010		000.034	00500.251
HDGV	001.399	000.016	002.839	025.321	000.028	000.025		000.045	00783.622
LDDV	000.225	000.003	000.317	003.873	000.007	000.006		000.008	00382.861
LDDT	000.538	000.005	000.853	007.913	000.009	000.008		000.008	00597.264
HDDV	000.763	000.014	008.044	002.712	000.368	000.339		000.028	01587.983
MC	002.858	000.008	000.719	014.264	000.027	000.024		000.050	00395.027

27.2.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ PA: \mbox{ Paving Area (ft^2)} \\ 0.25: \mbox{ Thickness of Paving Area (ft)} \\ (1/27): \mbox{ Conversion Factor cubic feet to cubic yards (1 yd^3 / 27 ft^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1/HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

28. Construction / Demolition

28.1 General Information & Timeline Assumptions

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: T-7A Explosive Component Storage

- Activity Description:

Construction of the explosive component storage facility would occur in 2026.

Site grading would occur on an area of approximately 0.35 acres (15,000 square feet). Site grading would begin in January 2026 and last approximately 2 months.

Trenching for site utilities would require approximately 250 feet of excavation and trenching for site fencing would require approximately 500 feet of excavation. A 3-foot trench width for utilities and 1-foot trench width for fencing was assumed, for a total of 1,250 square feet. Trenching would begin in March 2026 and last approximately 1 month.

Construction of the new storage facility would total approximately 7,200 square feet. The height of the storage facility was assumed to be 12 feet. Construction would begin in April 2026 and last approximately 6 months.

Architectural coatings would be applied to the facility, totaling 7,200 square feet. Architectural coating application would begin in October 2027 and last approximately 1 month.

The facility would require concrete or gravel hardstands and an access roadway. Paving would occur on an area totaling approximately 25,000 square feet. Paving would begin November 2026 and last approximately 2 months.

- Activity Start Date

Start Month:1Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.242628
SO _x	0.002995
NO _x	0.827269
CO	1.264223
PM 10	0.342648

Pollutant	Total Emissions (TONs)
PM 2.5	0.031751
Pb	0.000000
NH ₃	0.000833
CO ₂ e	291.3

28.1 Site Grading Phase

28.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 2 Number of Days: 0

28.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	15000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6

Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default) Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction Equipment Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozen	Rubber Tired Dozers Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs) 20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day) ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

28.2 Trenching/Excavating Phase

28.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 3 Start Quarter: 1 Start Year: 2026

- Phase Duration	
Number of Month:	1
Number of Days:	0

28.2.2 Trenching / Excavating Phase Assumptions

 General Trenching/Excavating Information Area of Site to be Trenched/Excavated (ft²): 1250 Amount of Material to be Hauled On-Site (yd³): 0
 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day	
Excavators Composite	2	8	
Other General Industrial Equipmen Composite	1	8	
Tractors/Loaders/Backhoes Composite	1	8	

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction Equipment Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozers Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Venicie Exhaust & Worker Trips Emission Factors (grams/mile)											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e		
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502		
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336		
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820		
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249		
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998		
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796		
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

28.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{VE}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

28.3 Building Construction Phase

28.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 4 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 6 Number of Days: 0

28.3.2 Building Construction Phase Assumptions

- General Building Construction Information

- Building Category:Office or IndustrialArea of Building (ft²):7200Height of Building (ft):12Number of Units:N/A
- Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day		
	Equipment			
Cranes Composite	1	4		
Forklifts Composite	2	6		
Tractors/Loaders/Backhoes Composite	1	8		

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

28.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					7				
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

 $\begin{array}{l} VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ BA: \ Area \ of \ Building \ (ft^2) \\ BH: \ Height \ of \ Building \ (ft) \\ (0.42 \ / \ 1000): \ Conversion \ Factor \ ft^3 \ to \ trips \ (0.42 \ trip \ / \ 1000 \ ft^3) \\ HT: \ Average \ Hauling \ Truck \ Round \ Trip \ Commute \ (mile/trip) \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

28.4 Architectural Coatings Phase

28.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	10
Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 1 Number of Days: 0

28.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 7200 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \mbox{ Vehicle Emissions (TONs)} \\ VMT_{WT}: \mbox{ Worker Trips Vehicle Miles Travel (miles)} \\ 0.002205: \mbox{ Conversion Factor grams to pounds} \\ EF_{POL}: \mbox{ Emission Factor for Pollutant (grams/mile)} \\ VM: \mbox{ Worker Trips On Road Vehicle Mixture (%)} \\ 2000: \mbox{ Conversion Factor pounds to tons} \end{array}$

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

28.5 Paving Phase

28.5.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:11Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 2 Number of Days: 0

28.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 25000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	1	8
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.5.3 Paving Phase Emission Factor(s)

Graders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	Rubber Tired Dozers Composite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

28.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

29. Heating

29.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating/Cooling for New Facilities

- Activity Description:

Heating/cooling for new facilities would begin with the arrival of the first T-7A aircraft and crews, or approximately January 2030. Heating/cooling would be required for the following facilities: GBTS Facility - 34,000 square feet UMT Facility - 11,500 square feet Hush House - 24,111 square feet Addition to the Egress Shop - 3,400 square feet T-7A Explosive Component Storage - 7,200 square feet Addition to Building 905 - 1,036 square feet

Total area to be heated -81,247 square feet

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.015810
SO _x	0.001725
NO _x	0.287460
CO	0.241466
PM 10	0.021847

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.021847
Pb	0.000000
NH ₃	0.000000
CO ₂ e	346.1

29.2 Heating Assumptions

- Heating

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²): 81247 Natural Gas Commercial/Institutional (0.3 - 9.9 MMBtu/hr) 0.00105 0.0743

- Default Settings Used: Yes

- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)

29.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

29.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL}=FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

30. Heating

30.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Remove Heating/Cooling for Demolished Facilities

- Activity Description:

Heating/cooling for demolished facilities (Buildings 15 = approximately 1,000 square feet; Building 18 = approximately 250 square feet) no longer would be required starting in approximately January 2026.

- Activity Start Date

Start Month:1Start Year:2026

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.000311
SO _x	-0.000034
NO _x	-0.005649
СО	-0.004745
PM 10	-0.000429

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.000429
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-6.8

30.2 Heating Assumptions

- Heating

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²): 1250 Natural Gas Commercial/Institutional (0.3 - 9.9 MMBtu/hr) 0.00105 0.0949

- Default Settings Used: Yes
- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)
- **30.3 Heating Emission Factor(s)**

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

30.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

 $FC_{HER} = HA * EI / HV / 1000000$

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL} = FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

31. Personnel

31.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Val Verde

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Maximum Increase of 190 Personnel

- Activity Description:

Addition of 190 personnel during the T-7A and T-38C transition period (i.e., 2030 and 2031). Assumed all personnel commute daily.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2031

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.548963
SO _x	0.005708
NO _x	0.323898

Pollutant	Total Emissions (TONs)
PM 2.5	0.008553
Pb	0.000000
NH ₃	0.056079

СО	7.752876
PM 10	0.009992

CO ₂ e	792.1

31.2 Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	190
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule

Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

31.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

31.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

31.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year $VMT_P = NP \ * \ WD \ * \ AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

32. Personnel

32.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

 Activity Location County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Net Decrease of 60 Personnel

- Activity Description: Net decrease of 60 personnel following T-38C withdrawal (i.e., 2032). Assumed all personnel commute daily.

- Activity Start Date

Start Month: 1 Start Year: 2032

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.086678
SO _x	-0.000901
NO _x	-0.051142
CO	-1.224138
PM 10	-0.001578

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001350
Pb	0.000000
NH ₃	-0.008855
CO ₂ e	-125.1

32.2 Personnel Assumptions

- Number of Personnel

⁻ Vehicle Emissions per Year

Active Duty Personnel:	60
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule	
Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

32.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

32.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

32.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33. Construction / Demolition

33.1 General Information & Timeline Assumptions

- Activity Location

County: Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Addition to Building 905

- Activity Description:

Construction of the addition to Building 905 and parking area would occur in 2026.

Construction of the addition would total approximately 1,036 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in January 2026 and last approximately 9 months.

Architectural coatings would be applied to the addition, totaling 1,036 square feet. Architectural coating application would begin in October 2026 and last approximately 1 month.

Site grading for the parking area would occur on approximately 5,000 square feet. Site grading would begin in November 2026 and last approximately 1 month.

Paving for the parking area would occur on approximately 5,000 square feet. Paving would begin in December 2026 and last approximately 1 month.

- Activity Start Date

Start Month:	1
Start Month:	2026

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.133232
SO _x	0.002426
NO _x	0.614393
СО	1.013668
PM 10	0.071146

Pollutant	Total Emissions (TONs)		
PM 2.5	0.021390		
Pb	0.000000		
NH ₃	0.000735		
CO ₂ e	234.6		

33.1 Site Grading Phase

33.1.1 Site Grading Phase Timeline Assumptions

Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2026

-

- Phase Duration Number of Month: 1 Number of Days: 0

33.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	5000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite	Graders Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89					
Other Construction Equipment Composite													

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60				
Rubber Tired Dozers Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45				
Tractors/Loaders/B	ackhoes Co	mposite	•		•							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{WT}: \ Worker \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

33.2 Building Construction Phase

33.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 9 Number of Days: 0

33.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	1036
Height of Building (ft):	20
Number of Units:	N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exh	- Vehicle Exhaust Vehicle Mixture (%)											
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC					
POVs	0	0	0	0	0	100.00	0					

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

33.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77				
Forklifts Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Tractors/Loaders/Ba	ackhoes Co	mposite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33.3 Architectural Coatings Phase

33.3.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 1 Number of Days: 0

33.3.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 1036 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.3.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.3.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs) BA: Area of Building (ft²) 2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area) 0.0116: Emission Factor (lb/ft²) 2000: Conversion Factor pounds to tons

33.4 Paving Phase

33.4.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 12 Start Quarter: 1 Start Year: 2026
- Phase Duration Number of Month: 1 Number of Days:

33.4.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 5000
- Paving Default Settings **Default Settings Used:** Yes Average Day(s) worked per week: 5 (default)

0

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.4.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Equipment	t Composite	e						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozen	rs Composi	te							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.197	000.002	000.094	003.149	000.003	000.003		000.024	00306.502
LDGT	000.208	000.003	000.168	003.545	000.005	000.004		000.026	00398.336
HDGV	000.890	000.006	000.817	013.497	000.022	000.020		000.051	00913.820
LDDV	000.059	000.001	000.080	003.473	000.003	000.002		000.008	00311.249
LDDT	000.064	000.001	000.119	002.357	000.003	000.003		000.009	00361.998
HDDV	000.101	000.004	002.293	001.540	000.042	000.038		000.032	01238.796
MC	002.758	000.003	000.620	012.221	000.023	000.020		000.054	00389.005

33.4.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT

 $\begin{array}{l} VMT_{VE}{:} \ \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ PA: \ Paving \ Area \ (ft^2) \\ 0.25{:} \ Thickness \ of \ Paving \ Area \ (ft) \\ (1 \ / \ 27){:} \ \ Conversion \ Factor \ cubic \ feet \ to \ cubic \ yards \ (1 \ yd^3 \ / \ 27 \ ft^3) \\ HC: \ Average \ Hauling \ Truck \ Capacity \ (yd^3) \\ (1 \ / \ HC){:} \ \ Conversion \ Factor \ cubic \ yards \ to \ trips \ (1 \ trip \ / \ HC \ yd^3) \end{array}$

HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

ROI 2: MTRs (IR-169, IR-170, VR-165, and VR-187)

This section includes the following:

- Alternative 1 ACAM Report
- Alternative 1 ACAM Detail Report
- Alternative 2 ACAM Report
- Alternative 2 ACAM Detail Report
- Alternative 3 ACAM Report
- Alternative 3 ACAM Detail Report

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:LAUGHLIN AFBState:TexasCounty(s):Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde;Edwards; Kinney; Maverick; Uvalde; Webb; Zavala; BrewsterRegulatory Area(s):Regulatory Area(s):NOT IN A REGULATORY AREA

- b. Action Title: T-7A Recapitalization at Laughlin AFB Alternative 1
- c. Project Number/s (if applicable):

d. Projected Action Start Date: 1/2030

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

f. Point of Contact:

Name:Carolyn HeinTitle:ContractorOrganization:HDREmail:Phone Number:

AIR CONFORMITY APPLICABILITY MODEL REPORT **RECORD OF AIR ANALYSIS (ROAA)**

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable X not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

Analysis Summary:

2030								
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR						
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)					
NOT IN A REGULATORY	AREA							
VOC	0.356	100						
NOx	3.971	100						
СО	-4.242	250						
SOx	0.185	250						
PM 10	-0.097	250						
PM 2.5	-0.089	250						
Pb	0.000	25	No					
NH3	0.000	250						
CO2e	559.5							

....

2031

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR						
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)					
NOT IN A REGULATORY AREA								
VOC	0.712	100						
NOx	7.943	100						
СО	-8.483	250						
SOx	0.370	250						
PM 10	-0.195	250						
PM 2.5	-0.179	250						
Pb	0.000	25	No					

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

NH3	0.000	250	
CO2e	1119.0		

2032

_~~									
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR							
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)						
NOT IN A REGULATORY	NOT IN A REGULATORY AREA								
VOC	0.712	100							
NOx	7.943	100							
СО	-8.483	250							
SOx	0.370	250							
PM 10	-0.195	250							
PM 2.5	-0.179	250							
Pb	0.000	25	No						
NH3	0.000	250							
CO2e	1119.0								

2033

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR						
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)					
NOT IN A REGULATORY AREA								
VOC	0.712	100						
NOx	7.943	100						
CO	-8.483	250						
SOx	0.370	250						
PM 10	-0.195	250						
PM 2.5	-0.179	250						
Pb	0.000	25	No					
NH3	0.000	250						
CO2e	1119.0							

2034 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR						
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)					
NOT IN A REGULATORY AREA								
VOC	0.712	100						
NOx	7.943	100						
СО	-8.483	250						
SOx	0.370	250						
PM 10	-0.195	250						
PM 2.5	-0.179	250						
Pb	0.000	25	No					
NH3	0.000	250						
CO2e	1119.0							

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mont

Carolyn Hein, Contractor

3/15/2023 DATE

1. General Information

- Action Location

 Base:
 LAUGHLIN AFB

 State:
 Texas

 County(s):
 Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde; Edwards; Kinney; Maverick; Uvalde; Webb; Zavala; Brewster

 Regulatory Area(s):
 NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 1

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2030

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Laughlin AFB to prepare pilots to operate modern fourth and fifth generation aircraft. The Proposed Action is needed because current training practices with older T 38C aircraft do not prepare pilots adequately for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern, capable training platform with capabilities beyond those available with the T 38C. Additionally, training systems provided with the newer T 7A aircraft allow for enhanced and improved flight and simulator training. The T 7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T 7A recapitalization at Laughlin AFB would allow DAF to continue the geographically phased T 7A recapitalization sequence, ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (IR-169)
3.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (IR-170)
4.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (VR-165)
5.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (VR-187)
6.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (IR-169)
7.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (IR-170)
8.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (VR-165)
9.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (VR-187)
10.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-169)
11.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-170)
12.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-165)
13.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-187)
14.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-169)
15.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-170)
16.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-165)
17.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-187)
18.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-169)
19.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-170)
20.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-165)
21.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-187)

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2030, add 54 T-7A Low-Altitude Operations in IR-169 with 27 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.162606
SO _x	0.076647
NO _x	1.174774
СО	0.133953
PM 10	0.009312

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.007880
Pb	0.000000
NH ₃	0.000000
CO ₂ e	231.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

part.	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		27
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		54
Number of Annual Trim Test(s) per Aircraft:	:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	22.76
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft

NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

```
County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala Regulatory Area(s): NOT IN A REGULATORY AREA
```

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2030, add 18 T-7A Low-Altitude Operations in IR-170 with 27 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.058798
SO _x	0.027715
NO _x	0.424797
CO	0.048437
PM 10	0.003367

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.002849
Pb	0.000000
NH ₃	0.000000
CO ₂ e	83.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		27
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for	or all Aircraft:	18
Number of Annual Trim Test(s) per Aircraft	:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

0

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

Takeoff [After Burn] (mins):

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

$AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Brewster; Pecos; Terrell

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2030, add 54 T-7A Low-Altitude Operations in VR-165 with 27 aircraft.

- Activity Start Date Start Month: 1

Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.105665
SO _x	0.049807
NO _x	0.763396
СО	0.087046
PM 10	0.006051

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.005120
Pb	0.000000
NH ₃	0.000000
CO ₂ e	150.5

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LFP (Low Flight Pattern)	27
Number of Annual Flight Operation Cycles		54
Number of Annual Trim Test(s) per Aircraf	ít:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	14.79	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 County: Brewster; Pecos; Terrell; Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (VR-187)
- Activity Description: Starting in 2030, add 108 T-7A Low-Altitude Operations in VR-187 with 27 aircraft.
- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.229620
SO _x	0.108235
NO _x	1.658929
СО	0.189158

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.011127
Pb	0.000000
NH ₃	0.000000
CO ₂ e	327.1

PM 10 0.013150

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		27
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for	r all Aircraft:	108
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	16.07	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2030, remove 54 T-38C Low-Altitude Operations in IR-169 with 32 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.058654
SO _x	-0.022575
NO _x	-0.014769
СО	-1.372881
PM 10	-0.037766

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.033969
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-68.2

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

6.2 Aircraft & Engines

-

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

An cruit & Englite Emissions I actors (ib/1000ib/1act)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		32
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycle	s for all Aircraft:	54
Number of Annual Trim Test(s) per Aircra	aft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	22.76
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesFOC: Number of Flight Operation Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2030, remove 18 T-38C Low-Altitude Operations in IR-170 with 32 aircraft.

- Activity Start Date

Start	Month:	1

Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.021209
SO _x	-0.008163
NO _x	-0.005340
СО	-0.496433
PM 10	-0.013656

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.012283
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-24.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

-	Aircraft	&	Engine
---	----------	---	--------

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LFP (Low Flight Pattern)	32
Number of Annual Flight Operation Cycles	s for all Aircraft:	18
Number of Annual Trim Test(s) per Aircra	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2030, remove 54 T-38C Low-Altitude Operations in VR-165 with 32 aircraft.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.038115
SO _x	-0.014670
NO _x	-0.009597
СО	-0.892131
PM 10	-0.024541

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.022074
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-44.3

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
6	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:		32
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycl	es for all Aircraft:	54
Number of Annual Trim Test(s) per Aircr	raft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): Approach (mins): 0 Intermediate (mins): 0 Military (mins): 0 AfterBurn (mins):

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

0

0

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines FOC: Number of Flight Operation Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEMIDLE IN: Aircraft Emissions for Idle-In Mode (TONs) AEMIDLE OUT: Aircraft Emissions for Idle-Out Mode (TONs) AEMAPPROACH: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Brewster; Pecos; Terrell; Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (VR-187)

- Activity Description:

Starting in 2030, remove 108 T-38C Low-Altitude Operations in VR-187 with 32 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.082827
SO _x	-0.031879
NO _x	-0.020856
CO	-1.938681
PM 10	-0.053331

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.047968
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-96.4

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
СО	0.000000	CO ₂ e	0.0
PM 10	0.000000		

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn: Yes Number of Engines: 2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No **Original Aircraft Name: Original Engine Name:**

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	0							
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:		32	
Flight Operation Cycle Type: LFP (Low Flight Pa			
Number of Annual Flight Operation Cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:			
- Flight Operations TIMs (Time In Mode)			
Taxi [Idle] (mins):	0		
Approach [Approach] (mins):	0		
Climb Out [Intermediate] (mins):	16.07		
Takeoff [Military] (mins):	0		
Takeoff [After Burn] (mins):	0		

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Between 2031 and 2032, add 54 T-7A Low-Altitude Operations in IR-169 with 34 aircraft.

- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.325212
SO _x	0.153294
NO _x	2.349548
СО	0.267906
PM 10	0.018624

Pollutant	Total Emissions (TONs)
PM 2.5	0.015759
Pb	0.000000
NH ₃	0.000000
CO ₂ e	463.3

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	s for all Aircraft:	54
Number of Annual Trim Test(s) per Aircra	ıft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Between 2031 and 2032, add 18 T-7A Low-Altitude Operations in IR-170 with 34 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.117596
SO _x	0.055431
NO _x	0.849595
СО	0.096875
PM 10	0.006735

Pollutant	Total Emissions (TONs)
PM 2.5	0.005699
Pb	0.000000
NH ₃	0.000000
CO ₂ e	167.5

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	18
Number of Annual Flight Operation Cycles for all Aircraft:		
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0

Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Between 2031 and 2032, add 54 T-7A Low-Altitude Operations in VR-165 with 34 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.211330
SO _x	0.099614
NO _x	1.526793
СО	0.174092
PM 10	0.012103

Pollutant	Total Emissions (TONs)
PM 2.5	0.010241
Pb	0.000000
NH ₃	0.000000
CO ₂ e	301.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)	Pollutant	Total Emissions (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

12.2 Aircraft & Engines

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

12.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		24
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	34
Number of Annual Flight Operation Cycles for all Aircraft:		54
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	14.79	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add - Activity Location Brewster; Pecos; Terrell; Val Verde County: **Regulatory Area(s):** NOT IN A REGULATORY AREA - Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-187) - Activity Description: Between 2031 and 2032, add 108 T-7A Low-Altitude Operations in VR-187 with 34 aircraft. - Activity Start Date **Start Month:** 1 Start Year: 2031 - Activity End Date Indefinite: No End Month: 12 2032 End Year:

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.459240
SO _x	0.216470
NO _x	3.317858
CO	0.378317
PM 10	0.026300

Pollutant	Total Emissions (TONs)
PM 2.5	0.022254
Pb	0.000000
NH ₃	0.000000
CO ₂ e	654.3

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

partj:	
Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

13.2 Aircraft & Engines

_

13.2.1 Aircraft & Engines Assumptions

· Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles f	for all Aircraft:	108
Number of Annual Trim Test(s) per Aircraft	:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	16.07	

Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): 0 Approach (mins): 0 Intermediate (mins): 0 Military (mins): 0 AfterBurn (mins): 0

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2031, remove 54 T-38C Low-Altitude Operations in IR-169 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.058654
SO _x	-0.022575
NO _x	-0.014769
СО	-1.372881
PM 10	-0.037766

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.033969
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-68.2

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

part.	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	0							
	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles		54
Number of Annual Trim Test(s) per Aircra	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2031, remove 18 T-38C Low-Altitude Operations in IR-170 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.021209
SO _x	-0.008163
NO _x	-0.005340
СО	-0.496433
PM 10	-0.013656

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.012283
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-24.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234

Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycle	es for all Aircraft:	18
Number of Annual Trim Test(s) per Aircr	aft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	24.69
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove	Activity from	Baseline?	Remove
-----------------	---------------	------------------	--------

 Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-165)
- Activity Description: Starting in 2031, remove 54 T-38C Low-Altitude Operations in VR-165 with 31 aircraft.

- Activity Start Date Start Month: 1

Start Year: 2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.038115

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.022074

SO _x	-0.014670
NO _x	-0.009597
CO	-0.892131
PM 10	-0.024541

Pb	0.000000
NH ₃	0.000000
CO ₂ e	-44.3

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

partj:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft	&	Engine	

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

16.3 Flight Operations

16.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:			31
Flight Operation Cycl	е Туре:	LFP (Low Flight Pattern)	
Number of Annual Fli	ght Operation	Cycles for all Aircraft:	54
Number of Annual Tr	im Test(s) per A	Aircraft:	0
- Default Settings Used:	No		
Flight On susting TIMe	T: I. Mada		

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0

Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

16.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Brewster; Pecos; Terrell; Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-187)

- Activity Description:

Starting in 2031, remove 108 T-38C Low-Altitude Operations in VR-187 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.082827
SO _x	-0.031879
NO _x	-0.020856
СО	-1.938681
PM 10	-0.053331

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.047968
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-96.4

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

part.	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
6	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycle	es for all Aircraft:	108
Number of Annual Trim Test(s) per Aircraft:		0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	16.07
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

$AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2033, add 54 T-7A Low-Altitude Operations in IR-169 with 36 aircraft.

- Activity Start Date

Start Month:1Start Year:2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.162606
SO _x	0.076647
NO _x	1.174774
СО	0.133953
PM 10	0.009312

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.007880
Pb	0.000000
NH ₃	0.000000
CO ₂ e	231.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

18.2 Aircraft & Engines

18.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

18.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

18.3 Flight Operations

18.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LFP (Low Flight Pattern)	36
Number of Annual Flight Operation Cycles		54
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

0
0
0
0
0

18.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2033, add 18 T-7A Low-Altitude Operations in IR-170 with 36 aircraft.

- Activity Start Date Start Month: 1 Start Year: 2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.058798
SO _x	0.027715
NO _x	0.424797
СО	0.048437

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.002849
Pb	0.000000
NH ₃	0.000000
CO ₂ e	83.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

19.3 Flight Operations

19.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		18
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

· Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

19.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

20. Aircraft

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Brewster; Pecos; Terrell
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2033, add 54 T-7A Low-Altitude Operations in VR-165 with 36 aircraft.

- Activity Start Date

Start Month:1Start Year:2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.105665
SO _x	0.049807
NO _x	0.763396
СО	0.087046
PM 10	0.006051

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.005120
Pb	0.000000
NH ₃	0.000000
CO ₂ e	150.5

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

20.2 Aircraft & Engines

20.2.1 Aircraft & Engines Assumptions

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

20.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

20.3 Flight Operations

20.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycle	es for all Aircraft:	54
Number of Annual Trim Test(s) per Aircr	aft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

)
)
)
)
)

20.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

21. Aircraft

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Brewster; Pecos; Terrell; Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-187)

- Activity Description: Starting in 2033, add 108 T-7A Low-Altitude Operations in VR-187 with 36 aircraft.

- Activity Start Date Start Month: 1 Start Year: 2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.229620
SO _x	0.108235
NO _x	1.658929
CO	0.189158
PM 10	0.013150

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.011127
Pb	0.000000
NH ₃	0.000000
CO ₂ e	327.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO_2e	0.0

21.2 Aircraft & Engines

21.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

21.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

21.3 Flight Operations

21.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	108
Number of Annual Trim Test(s) per Aircraft	t:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	16.07
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

21.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft

NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPSAFTERBURN: Aircraft Emissions for After Burner Power Setting (TONs)

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:LAUGHLIN AFBState:TexasCounty(s):Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde;Edwards; Kinney; Maverick; Uvalde; Webb; Zavala; BrewsterRegulatory Area(s):Regulatory Area(s):NOT IN A REGULATORY AREA

- b. Action Title: T-7A Recapitalization at Laughlin AFB Alternative 2
- c. Project Number/s (if applicable):

d. Projected Action Start Date: 1/2030

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

f. Point of Contact:

Name:Carolyn HeinTitle:ContractorOrganization:HDREmail:Phone Number:

AIR CONFORMITY APPLICABILITY MODEL REPORT **RECORD OF AIR ANALYSIS (ROAA)**

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable X not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

Analysis Summary:

2030			
Pollutant	Action Emissions INSIGNIFICANCE INDICATOR		NCE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.520	100	
NOx	4.852	100	
СО	-3.125	250	
SOx	0.259	250	
PM 10	-0.063	250	
PM 2.5	-0.058	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	781.6		

....

2031

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.953	100	
NOx	9.683	100	
СО	-8.285	250	
SOx	0.484	250	
PM 10	-0.181	250	
PM 2.5	-0.167	250	
Pb	0.000	25	No

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

NH3	0.000	250	
CO2e	1462.2		

2032

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.953	100	
NOx	9.683	100	
СО	-8.285	250	
SOx	0.484	250	
PM 10	-0.181	250	
PM 2.5	-0.167	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	1462.2		

2033

Pollutant	Action Emissions	Action Emissions INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.953	100	
NOx	9.683	100	
CO	-8.285	250	
SOx	0.484	250	
PM 10	-0.181	250	
PM 2.5	-0.167	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	1462.2		

2034 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICAN	CE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.953	100	
NOx	9.683	100	
СО	-8.285	250	
SOx	0.484	250	
PM 10	-0.181	250	
PM 2.5	-0.167	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	1462.2		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mont

Carolyn Hein, Contractor

3/15/2023 DATE

1. General Information

- Action Location

 Base:
 LAUGHLIN AFB

 State:
 Texas

 County(s):
 Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde; Edwards; Kinney; Maverick; Uvalde; Webb; Zavala; Brewster

 Regulatory Area(s):
 NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 2

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2030

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Laughlin AFB to prepare pilots to operate modern fourth and fifth generation aircraft. The Proposed Action is needed because current training practices with older T 38C aircraft do not prepare pilots adequately for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern, capable training platform with capabilities beyond those available with the T 38C. Additionally, training systems provided with the newer T 7A aircraft allow for enhanced and improved flight and simulator training. The T 7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T 7A recapitalization at Laughlin AFB would allow DAF to continue the geographically phased T 7A recapitalization sequence, ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (IR-169)
3.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (IR-170)
4.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (VR-165)
5.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (VR-187)
6.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (IR-169)
7.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (IR-170)
8.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (VR-165)
9.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (VR-187)
10.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-169)
11.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-170)
12.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-165)
13.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-187)
14.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-169)
15.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-170)
16.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-165)
17.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-187)
18.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-169)
19.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-170)
20.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-165)
21.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-187)

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2030, add 66 T-7A Low-Altitude Operations in IR-169 with 27 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.198741
SO _x	0.093679
NO _x	1.435835
СО	0.163720
PM 10	0.011382

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009631
Pb	0.000000
NH ₃	0.000000
CO ₂ e	283.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		27
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	66
Number of Annual Trim Test(s) per Aircraf	t:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	22.76
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft

NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

```
County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala Regulatory Area(s): NOT IN A REGULATORY AREA
```

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2030, add 21 T-7A Low-Altitude Operations in IR-170 with 27 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.068598
SO _x	0.032335
NO _x	0.495597
CO	0.056510
PM 10	0.003929

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.003324
Pb	0.000000
NH ₃	0.000000
CO ₂ e	97.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		27
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for	or all Aircraft:	21
Number of Annual Trim Test(s) per Aircraft	:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

0

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

Takeoff [After Burn] (mins):

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Brewster; Pecos; Terrell

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2030, add 66 T-7A Low-Altitude Operations in VR-165 with 27 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.129146
SO _x	0.060875
NO _x	0.933040
СО	0.106389
PM 10	0.007396

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.006258
Pb	0.000000
NH ₃	0.000000
CO ₂ e	184.0

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		27
Flight Operation Cycle Type: Number of Annual Flight Operation Cycles	LFP (Low Flight Pattern)	66
Number of Annual Trim Test(s) per Aircra		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)	0	
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	14.79	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 County: Brewster; Pecos; Terrell; Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (VR-187)
- Activity Description: Starting in 2030, add 132 T-7A Low-Altitude Operations in VR-187 with 27 aircraft.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.280647
SO _x	0.132287
NO _x	2.027580
СО	0.231194

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.013600
Pb	0.000000
NH ₃	0.000000
CO ₂ e	399.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

	27
LFP (Low Flight Pattern)	21
Aircraft:	132
	0
0	
0	
16.07	
0	
0	
	0 0 16.07 0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2030, remove 42 T-38C Low-Altitude Operations in IR-169 with 32 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.045620
SO _x	-0.017559
NO _x	-0.011487
СО	-1.067796
PM 10	-0.029374

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.026420
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-53.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

6.2 Aircraft & Engines

-

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- An erare & Engine Emissions ractors (10/100010 ruci)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		32
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycl	es for all Aircraft:	42
Number of Annual Trim Test(s) per Airci	raft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	22.76
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesFOC: Number of Flight Operation Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2030, remove 15 T-38C Low-Altitude Operations in IR-170 with 32 aircraft.

- Activity Start Date

Start	Month:	1	
		-	

Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.017674
SO _x	-0.006803
NO _x	-0.004450
СО	-0.413694
PM 10	-0.011380

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010236
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-20.6

- Activity Emissions [Aerospace Ground Equipment (AGE) part]

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

-	Aircraft	&	Engine
---	----------	---	--------

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	0		(
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LFP (Low Flight Pattern)	32
Number of Annual Flight Operation Cycles	s for all Aircraft:	15
Number of Annual Trim Test(s) per Aircra	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2030, remove 42 T-38C Low-Altitude Operations in VR-165 with 32 aircraft.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.029645
SO _x	-0.011410
NO _x	-0.007465
CO	-0.693880
PM 10	-0.019088

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.017168
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-34.5

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
6	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:		32
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycl	es for all Aircraft:	42
Number of Annual Trim Test(s) per Airci	raft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): Approach (mins): 0 **Intermediate (mins):** 0 Military (mins): 0 AfterBurn (mins):

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

0

0

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines FOC: Number of Flight Operation Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEMIDLE IN: Aircraft Emissions for Idle-In Mode (TONs) AEMIDLE OUT: Aircraft Emissions for Idle-Out Mode (TONs) AEMAPPROACH: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Brewster; Pecos; Terrell; Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (VR-187)

- Activity Description:

Starting in 2030, remove 84 T-38C Low-Altitude Operations in VR-187 with 32 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.064421
SO _x	-0.024795
NO _x	-0.016221
СО	-1.507863
PM 10	-0.041480

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.037308
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-74.9

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
СО	0.000000	CO ₂ e	0.0
PM 10	0.000000		

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	0							
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations				
Number of Aircraft:		32		
Flight Operation Cycle Type: LFP (Low Flight Patter				
Number of Annual Flight Operation Cycles for all Aircraft:				
Number of Annual Trim Test(s) per Aircraf	ft:	0		
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)				
Taxi [Idle] (mins):	0			
Approach [Approach] (mins):	0			
Climb Out [Intermediate] (mins):	16.07			
Takeoff [Military] (mins):	0			
Takeoff [After Burn] (mins):	0			

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Between 2031 and 2032, add 66 T-7A Low-Altitude Operations in IR-169 with 34 aircraft.

- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.397481
SO _x	0.187359
NO _x	2.871669
СО	0.327440
PM 10	0.022763

Pollutant	Total Emissions (TONs)
PM 2.5	0.019261
Pb	0.000000
NH ₃	0.000000
CO ₂ e	566.3

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycle	s for all Aircraft:	66
Number of Annual Trim Test(s) per Aircra	aft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Between 2031 and 2032, add 21 T-7A Low-Altitude Operations in IR-170 with 34 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.137196
SO _x	0.064669
NO _x	0.991194
СО	0.113020
PM 10	0.007857

Pollutant	Total Emissions (TONs)
PM 2.5	0.006648
Pb	0.000000
NH ₃	0.000000
CO ₂ e	195.5

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

11.2 Aircraft & Engines

_

11.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		
Number of Annual Trim Test(s) per Aircraft:		0
 Default Settings Used: No Flight Operations TIMs (Time In Mode) 		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0

Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Between 2031 and 2032, add 66 T-7A Low-Altitude Operations in VR-165 with 34 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.258293
SO _x	0.121750
NO _x	1.866080
CO	0.212779
PM 10	0.014792

Pollutant	Total Emissions (TONs)
PM 2.5	0.012516
Pb	0.000000
NH ₃	0.000000
CO ₂ e	368.0

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:				
Pollutant	Total Emissions (TONs)		Pollutant	Total Emissions (TONs)
VOC	0.000000		PM 2.5	0.000000
SO _x	0.000000		Pb	0.000000
NO _x	0.000000		NH ₃	0.000000
СО	0.000000		CO ₂ e	0.0
PM 10	0.000000			

12.2 Aircraft & Engines

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

12.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		
Number of Annual Trim Test(s) per Aircraf	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	14.79	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add - Activity Location Brewster; Pecos; Terrell; Val Verde County: **Regulatory Area(s):** NOT IN A REGULATORY AREA - Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-187) - Activity Description: Between 2031 and 2032, add 132 T-7A Low-Altitude Operations in VR-187 with 34 aircraft. - Activity Start Date **Start Month:** 1 Start Year: 2031 - Activity End Date Indefinite: No End Month: 12 2032 End Year:

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.561294
SO _x	0.264574
NO _x	4.055160
CO	0.462387
PM 10	0.032145

Pollutant	Total Emissions (TONs)
PM 2.5	0.027199
Pb	0.000000
NH ₃	0.000000
CO ₂ e	799.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

partj:	
Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

13.2 Aircraft & Engines

_

13.2.1 Aircraft & Engines Assumptions

· Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for	or all Aircraft:	132
Number of Annual Trim Test(s) per Aircraft:	:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	16.07	

Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): 0 Approach (mins): 0 Intermediate (mins): 0 Military (mins): 0 AfterBurn (mins): 0

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2031, remove 66 T-38C Low-Altitude Operations in IR-169 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.071688
SO _x	-0.027592
NO _x	-0.018051
СО	-1.677965
PM 10	-0.046159

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.041517
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-83.4

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	ruer riow	VUC	SU _x	ΠŪχ		1 1/1 10	1 1/1 2.3	$\mathbf{CO}_2\mathbf{e}$
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	66
Number of Annual Trim Test(s) per Aircra	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2031, remove 21 T-38C Low-Altitude Operations in IR-170 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.024744
SO _x	-0.009524
NO _x	-0.006231
CO	-0.579171
PM 10	-0.015932

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.014330
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-28.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234

Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		21
Number of Annual Trim Test(s) per Aircr	aft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	24.69
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove	Activity from	Baseline?	Remove
-----------------	---------------	------------------	--------

 Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-165)

- Activity Description: Starting in 2031, remove 66 T-38C Low-Altitude Operations in VR-165 with 31 aircraft.

- Activity Start Date Start Month: 1

Start Year: 2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.046585

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.026979

SO _x	-0.017930
NO _x	-0.011730
CO	-1.090383
PM 10	-0.029995

Pb	0.000000
NH ₃	0.000000
CO ₂ e	-54.2

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

partj:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft &	& Engine
	a. n

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

16.3 Flight Operations

16.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:			31
Flight Operation Cycl	е Туре:	LFP (Low Flight Pattern)	
Number of Annual Fli	ght Operation C	ycles for all Aircraft:	66
Number of Annual Tr	im Test(s) per Ai	rcraft:	0
- Default Settings Used:	No		
Flaht On and the TIME	(T' I. M. I.)		

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0

Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

16.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Brewster; Pecos; Terrell; Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-187)

- Activity Description:

Starting in 2031, remove 132 T-38C Low-Altitude Operations in VR-187 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.101233
SO _x	-0.038964
NO _x	-0.025490
СО	-2.369499
PM 10	-0.065182

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.058628
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-117.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

part.	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
6	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycl	les for all Aircraft:	132
Number of Annual Trim Test(s) per Airc	raft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	16.07
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

$AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2033, add 66 T-7A Low-Altitude Operations in IR-169 with 36 aircraft.

- Activity Start Date

Start Month:1Start Year:2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.198741
SO _x	0.093679
NO _x	1.435835
CO	0.163720
PM 10	0.011382

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009631
Pb	0.000000
NH ₃	0.000000
CO ₂ e	283.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

18.2 Aircraft & Engines

18.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

18.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

18.3 Flight Operations

18.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LFP (Low Flight Pattern)	36
Number of Annual Flight Operation Cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:		66
		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode) Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	ů 0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

18.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2033, add 21 T-7A Low-Altitude Operations in IR-170 with 36 aircraft.

- Activity Start Date Start Month: 1 Start Year: 2033

- Activity End Date		
Indefinite:	Yes	
End Month:	N/A	
End Year:	N/A	

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.068598
SO _x	0.032335
NO _x	0.495597
СО	0.056510

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.003324
Pb	0.000000
NH ₃	0.000000
CO ₂ e	97.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

19.3 Flight Operations

19.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for	all Aircraft:	21
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

· Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

19.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

20. Aircraft

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Brewster; Pecos; Terrell
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2033, add 66 T-7A Low-Altitude Operations in VR-165 with 36 aircraft.

- Activity Start Date

Start Month:1Start Year:2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)			
VOC	0.129146			
SO _x	0.060875			
NO _x	0.933040			
СО	0.106389			
PM 10	0.007396			

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.006258
Pb	0.000000
NH ₃	0.000000
CO ₂ e	184.0

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

20.2 Aircraft & Engines

20.2.1 Aircraft & Engines Assumptions

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

20.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

20.3 Flight Operations

20.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	o for all Aircraft:	66
Number of Annual Trim Test(s) per Aircra	ft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

0
0
0
0
0

20.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

21. Aircraft

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Brewster; Pecos; Terrell; Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-187)

 Activity Description: Starting in 2033, add 132 T-7A Low-Altitude Operations in VR-187 with 36 aircraft.

- Activity Start Date Start Month: 1 Start Year: 2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.280647
SO _x	0.132287
NO _x	2.027580
СО	0.231194
PM 10	0.016072

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.013600
Pb	0.000000
NH ₃	0.000000
CO ₂ e	399.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

partj.	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

21.2 Aircraft & Engines

21.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

21.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

21.3 Flight Operations

21.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	132
Number of Annual Trim Test(s) per Aircraf	ť:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	16.07
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

21.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft

NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPSAFTERBURN: Aircraft Emissions for After Burner Power Setting (TONs)

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:LAUGHLIN AFBState:TexasCounty(s):Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde;Edwards; Kinney; Maverick; Uvalde; Webb; Zavala; BrewsterRegulatory Area(s):Regulatory Area(s):NOT IN A REGULATORY AREA

- b. Action Title: T-7A Recapitalization at Laughlin AFB Alternative 3
- c. Project Number/s (if applicable):

d. Projected Action Start Date: 1/2030

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

f. Point of Contact:

Name:Carolyn HeinTitle:ContractorOrganization:HDREmail:Phone Number:

AIR CONFORMITY APPLICABILITY MODEL REPORT **RECORD OF AIR ANALYSIS (ROAA)**

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable X not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

Analysis Summary:

2030				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	NOT IN A REGULATORY AREA			
VOC	0.520	100		
NOx	4.852	100		
СО	-3.125	250		
SOx	0.259	250		
PM 10	-0.063	250		
PM 2.5	-0.058	250		
Pb	0.000	25	No	
NH3	0.000	250		
CO2e	781.6			

....

2031

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	NOT IN A REGULATORY AREA			
VOC	0.953	100		
NOx	9.683	100		
СО	-8.285	250		
SOx	0.484	250		
PM 10	-0.181	250		
PM 2.5	-0.167	250		
Pb	0.000	25	No	

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

NH3	0.000	250	
CO2e	1462.2		

2032

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.953	100	
NOx	9.683	100	
СО	-8.285	250	
SOx	0.484	250	
PM 10	-0.181	250	
PM 2.5	-0.167	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	1462.2		

2033

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.953	100	
NOx	9.683	100	
CO	-8.285	250	
SOx	0.484	250	
PM 10	-0.181	250	
PM 2.5	-0.167	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	1462.2		

2034 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	0.953	100	
NOx	9.683	100	
СО	-8.285	250	
SOx	0.484	250	
PM 10	-0.181	250	
PM 2.5	-0.167	250	
Pb	0.000	25	No
NH3	0.000	250	
CO2e	1462.2		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mont

Carolyn Hein, Contractor

3/15/2023 DATE

1. General Information

- Action Location

 Base:
 LAUGHLIN AFB

 State:
 Texas

 County(s):
 Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde; Edwards; Kinney; Maverick; Uvalde; Webb; Zavala; Brewster

 Regulatory Area(s):
 NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Laughlin AFB - Alternative 3

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2030

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Laughlin AFB to prepare pilots to operate modern fourth and fifth generation aircraft. The Proposed Action is needed because current training practices with older T 38C aircraft do not prepare pilots adequately for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern, capable training platform with capabilities beyond those available with the T 38C. Additionally, training systems provided with the newer T 7A aircraft allow for enhanced and improved flight and simulator training. The T 7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T 7A recapitalization at Laughlin AFB would allow DAF to continue the geographically phased T 7A recapitalization sequence, ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Laughlin AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Laughlin AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; changes to the number of personnel and dependents in the Laughlin AFB region; and construction and upgrade of operations, support, and maintenance facilities. DAF is considering three alternative ways to implement the Proposed Action (i.e., Alternatives 1, 2, and 3), the No Action Alternative, and several military construction (MILCON) project alternatives.

For Alternative 1, Laughlin AFB would receive 63 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 63 T-7A aircraft being delivered to Laughlin AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Laughlin AFB would receive 79 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the additional T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Laughlin AFB.

The analysis for all construction and operation actions assumes the following: (1) MILCON projects would occur over a period of 2 years and FSRM projects would occur over a period of 1 year; (2) during construction, no materials are required to be hauled on- or off-site as excavated spoils will be used on-site; (3) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; and (4) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (IR-169)
3.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (IR-170)
4.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (VR-165)
5.	Aircraft	2030: Add T-7A MTR Low-Altitude Operations (VR-187)
6.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (IR-169)
7.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (IR-170)
8.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (VR-165)
9.	Aircraft	2030: Remove T-38C MTR Low-Altitude Operations (VR-187)
10.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-169)
11.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-170)
12.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-165)
13.	Aircraft	2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-187)
14.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-169)
15.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-170)
16.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-165)
17.	Aircraft	2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-187)
18.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-169)
19.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-170)
20.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-165)
21.	Aircraft	2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-187)

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2030, add 66 T-7A Low-Altitude Operations in IR-169 with 43 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.198741
SO _x	0.093679
NO _x	1.435835
СО	0.163720
PM 10	0.011382

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009631
Pb	0.000000
NH ₃	0.000000
CO ₂ e	283.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		43
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		66
Number of Annual Trim Test(s) per Aircraft:	:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	22.76
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft

NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

```
County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala Regulatory Area(s): NOT IN A REGULATORY AREA
```

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2030, add 21 T-7A Low-Altitude Operations in IR-170 with 43 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.068598
SO _x	0.032335
NO _x	0.495597
CO	0.056510
PM 10	0.003929

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.003324
Pb	0.000000
NH ₃	0.000000
CO ₂ e	97.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		43
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		21
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

0

0

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

Takeoff [Military] (mins):

Takeoff [After Burn] (mins):

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Brewster; Pecos; Terrell

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2030, add 66 T-7A Low-Altitude Operations in VR-165 with 43 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.129146
SO _x	0.060875
NO _x	0.933040
СО	0.106389
PM 10	0.007396

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.006258
Pb	0.000000
NH ₃	0.000000
CO ₂ e	184.0

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	
VOC	0.000000	
SO _x	0.000000	
NO _x	0.000000	
СО	0.000000	
PM 10	0.000000	

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type: Number of Annual Flight Operation Cycles Number of Annual Trim Test(s) per Aircra		43 66 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	14.79	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

0
0
0
0
0

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 County: Brewster; Pecos; Terrell; Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030: Add T-7A MTR Low-Altitude Operations (VR-187)
- Activity Description: Starting in 2030, add 132 T-7A Low-Altitude Operations in VR-187 with 43 aircraft.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.280647
SO _x	0.132287
NO _x	2.027580
СО	0.231194

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.013600
Pb	0.000000
NH ₃	0.000000
CO ₂ e	399.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations		42
Number of Aircraft:		43
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for all Aircraft:		132
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	16.07	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2030, remove 42 T-38C Low-Altitude Operations in IR-169 with 32 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.045620
SO _x	-0.017559
NO _x	-0.011487
СО	-1.067796
PM 10	-0.029374

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.026420
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-53.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

6.2 Aircraft & Engines

-

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- I'll crait & Engline Enlission's Factor's (10/100010 fuct)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		32
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycl	es for all Aircraft:	42
Number of Annual Trim Test(s) per Airci	raft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	22.76
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesFOC: Number of Flight Operation Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2030, remove 15 T-38C Low-Altitude Operations in IR-170 with 32 aircraft.

- Activity Start Date

Start	Month:	1	
		-	

Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.017674
SO _x	-0.006803
NO _x	-0.004450
СО	-0.413694
PM 10	-0.011380

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010236
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-20.6

- Activity Emissions [Aerospace Ground Equipment (AGE) part]

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

-	Aircraft	&	Engine
---	----------	---	--------

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

===============================								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LFP (Low Flight Pattern)	32
Number of Annual Flight Operation Cycles	s for all Aircraft:	15
Number of Annual Trim Test(s) per Aircra	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2030, remove 42 T-38C Low-Altitude Operations in VR-165 with 32 aircraft.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.029645
SO _x	-0.011410
NO _x	-0.007465
СО	-0.693880
PM 10	-0.019088

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.017168
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-34.5

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
6	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:		32
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycl	es for all Aircraft:	42
Number of Annual Trim Test(s) per Airci	raft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): Approach (mins): 0 **Intermediate (mins):** 0 Military (mins): 0 AfterBurn (mins):

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

0

0

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines FOC: Number of Flight Operation Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEMIDLE IN: Aircraft Emissions for Idle-In Mode (TONs) AEMIDLE OUT: Aircraft Emissions for Idle-Out Mode (TONs) AEMAPPROACH: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Brewster; Pecos; Terrell; Val Verde
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030: Remove T-38C MTR Low-Altitude Operations (VR-187)

- Activity Description:

Starting in 2030, remove 84 T-38C Low-Altitude Operations in VR-187 with 32 aircraft.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.064421
SO _x	-0.024795
NO _x	-0.016221
СО	-1.507863
PM 10	-0.041480

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.037308
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-74.9

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
СО	0.000000	CO ₂ e	0.0
PM 10	0.000000		

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	0							
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations					
Number of Aircraft:		32			
Flight Operation Cycle Type:	LFP (Low Flight Pattern)				
Number of Annual Flight Operation Cycles for all Aircraft:					
Number of Annual Trim Test(s) per Aircraft:					
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)					
Taxi [Idle] (mins):	0				
Approach [Approach] (mins):	0				
Climb Out [Intermediate] (mins):	16.07				
Takeoff [Military] (mins):	0				
Takeoff [After Burn] (mins):	0				

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Between 2031 and 2032, add 66 T-7A Low-Altitude Operations in IR-169 with 34 aircraft.

- Activity Start Date

Start Month:	1
Start Year:	2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.397481
SO _x	0.187359
NO _x	2.871669
СО	0.327440
PM 10	0.022763

Pollutant	Total Emissions (TONs)
PM 2.5	0.019261
Pb	0.000000
NH ₃	0.000000
CO ₂ e	566.3

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycle	s for all Aircraft:	66
Number of Annual Trim Test(s) per Aircra	aft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Between 2031 and 2032, add 21 T-7A Low-Altitude Operations in IR-170 with 34 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.137196
SO _x	0.064669
NO _x	0.991194
СО	0.113020
PM 10	0.007857

Pollutant	Total Emissions (TONs)
PM 2.5	0.006648
Pb	0.000000
NH ₃	0.000000
CO ₂ e	195.5

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

11.2 Aircraft & Engines

_

11.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:		34	
Flight Operation Cycle Type:LFP (Low Flight Pattern)			
Number of Annual Flight Operation Cycles for all Aircraft:			
Number of Annual Trim Test(s) per Aircraft:		0	
 Default Settings Used: No Flight Operations TIMs (Time In Mode) 			
Taxi [Idle] (mins):	0		
Approach [Approach] (mins):	0		
Climb Out [Intermediate] (mins):	24.69		
Takeoff [Military] (mins):	0		
Takeoff [After Burn] (mins):	0		

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0

Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Between 2031 and 2032, add 66 T-7A Low-Altitude Operations in VR-165 with 34 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2032

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.258293
SO _x	0.121750
NO _x	1.866080
CO	0.212779
PM 10	0.014792

Pollutant	Total Emissions (TONs)
PM 2.5	0.012516
Pb	0.000000
NH ₃	0.000000
CO_2e	368.0

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

- Activity Emissions [Aerospace Ground Equipment (AGE) parti:				
Pollutant	Total Emissions (TONs)		Pollutant	Total Emissions (TONs)
VOC	0.000000		PM 2.5	0.000000
SO _x	0.000000		Pb	0.000000
NO _x	0.000000		NH ₃	0.000000
СО	0.000000		CO ₂ e	0.0
PM 10	0.000000			

12.2 Aircraft & Engines

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

12.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	Number of Annual Flight Operation Cycles for all Aircraft:	
Number of Annual Trim Test(s) per Aircraf	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	14.79	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add - Activity Location Brewster; Pecos; Terrell; Val Verde County: **Regulatory Area(s):** NOT IN A REGULATORY AREA - Activity Title: 2031 and 2032: Add T-7A MTR Low-Altitude Operations (VR-187) - Activity Description: Between 2031 and 2032, add 132 T-7A Low-Altitude Operations in VR-187 with 34 aircraft. - Activity Start Date Start Month: 1 Start Year: 2031 - Activity End Date Indefinite: No End Month: 12 2032 End Year:

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.561294
SO _x	0.264574
NO _x	4.055160
CO	0.462387
PM 10	0.032145

Pollutant	Total Emissions (TONs)
PM 2.5	0.027199
Pb	0.000000
NH ₃	0.000000
CO ₂ e	799.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Total Emissions (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

partj:	
Pollutant	Total Emissions (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

13.2 Aircraft & Engines

_

13.2.1 Aircraft & Engines Assumptions

· Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		34
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for	or all Aircraft:	132
Number of Annual Trim Test(s) per Aircraft:	:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	16.07	

Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test Idle (mins): 0 Approach (mins): 0 Intermediate (mins): 0 Military (mins): 0 AfterBurn (mins): 0

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2031, remove 66 T-38C Low-Altitude Operations in IR-169 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.071688
SO _x	-0.027592
NO _x	-0.018051
СО	-1.677965
PM 10	-0.046159

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.041517
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-83.4

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	ruer riow	voc	SU _x	ΠŪχ		1 1/1 10	1 1/1 2.3	$\mathbf{CO}_2\mathbf{e}$
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	66
Number of Annual Trim Test(s) per Aircra	ft:	0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2031, remove 21 T-38C Low-Altitude Operations in IR-170 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.024744
SO _x	-0.009524
NO _x	-0.006231
CO	-0.579171
PM 10	-0.015932

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.014330
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-28.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234

Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycle	es for all Aircraft:	21
Number of Annual Trim Test(s) per Aircr	aft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	24.69
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove	Activity from	Baseline?	Remove
-----------------	---------------	------------------	--------

 Activity Location County: Brewster; Pecos; Terrell Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-165)

- Activity Description: Starting in 2031, remove 66 T-38C Low-Altitude Operations in VR-165 with 31 aircraft.

- Activity Start Date Start Month: 1

Start Year: 2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.046585

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.026979

SO _x	-0.017930
NO _x	-0.011730
CO	-1.090383
PM 10	-0.029995

Pb	0.000000
NH ₃	0.000000
CO ₂ e	-54.2

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

partj:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft &	& Engine
	a. n

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

16.3 Flight Operations

16.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:			31
Flight Operation Cycl	е Туре:	LFP (Low Flight Pattern)	
Number of Annual Fli	ght Operation C	ycles for all Aircraft:	66
Number of Annual Tr	im Test(s) per Ai	rcraft:	0
- Default Settings Used:	No		
Flaht On and the TIME	(T' I. M. I.)		

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0

Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

16.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Brewster; Pecos; Terrell; Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2031 and Later: Remove T-38C MTR Low-Altitude Operations (VR-187)

- Activity Description:

Starting in 2031, remove 132 T-38C Low-Altitude Operations in VR-187 with 31 aircraft.

- Activity Start Date

Start Month:1Start Year:2031

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.101233
SO _x	-0.038964
NO _x	-0.025490
СО	-2.369499
PM 10	-0.065182

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.058628
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-117.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

part.	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
6	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.23	3234
Approach	689.00	7.96	1.07	0.84	119.23	2.42	2.17	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	1.61	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	1.01	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.23	3234

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		31
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycl	les for all Aircraft:	132
Number of Annual Trim Test(s) per Airc	raft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	16.07
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

$AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Crockett; Dimmit; Irion; Pecos; Reagan; Schleicher; Sutton; Terrell; Upton; Val Verde

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-169)

- Activity Description:

Starting in 2033, add 66 T-7A Low-Altitude Operations in IR-169 with 36 aircraft.

- Activity Start Date

Start Month:1Start Year:2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.198741
SO _x	0.093679
NO _x	1.435835
CO	0.163720
PM 10	0.011382

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009631
Pb	0.000000
NH ₃	0.000000
CO ₂ e	283.1

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

18.2 Aircraft & Engines

18.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

18.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

18.3 Flight Operations

18.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Flight Operation Cycle Type:	LFP (Low Flight Pattern)	36
Number of Annual Flight Operation Cycles for all Aircraft:		
Number of Annual Trim Test(s) per Aircraft:		
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode) Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	ů 0	
Climb Out [Intermediate] (mins):	22.76	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

18.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Dimmit; Edwards; Kinney; Maverick; Uvalde; Val Verde; Webb; Zavala **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (IR-170)

- Activity Description:

Starting in 2033, add 21 T-7A Low-Altitude Operations in IR-170 with 36 aircraft.

- Activity Start Date Start Month: 1 Start Year: 2033

- Activity End Date	
Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.068598
SO _x	0.032335
NO _x	0.495597
СО	0.056510

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.003324
Pb	0.000000
NH ₃	0.000000
CO ₂ e	97.7

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
СО	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

19.3 Flight Operations

19.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles for	all Aircraft:	21
Number of Annual Trim Test(s) per Aircraft:		0
- Default Settings Used: No - Flight Operations TIMs (Time In Mode)		
Taxi [Idle] (mins):	0	
Approach [Approach] (mins):	0	
Climb Out [Intermediate] (mins):	24.69	
Takeoff [Military] (mins):	0	
Takeoff [After Burn] (mins):	0	

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

· Trim Test	
Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

19.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

20. Aircraft

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Brewster; Pecos; Terrell
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-165)

- Activity Description:

Starting in 2033, add 66 T-7A Low-Altitude Operations in VR-165 with 36 aircraft.

- Activity Start Date

Start Month:1Start Year:2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.129146
SO _x	0.060875
NO _x	0.933040
СО	0.106389
PM 10	0.007396

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.006258
Pb	0.000000
NH ₃	0.000000
CO ₂ e	184.0

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.000000	PM 2.5	0.000000
SO _x	0.000000	Pb	0.000000
NO _x	0.000000	NH ₃	0.000000
CO	0.000000	CO ₂ e	0.0
PM 10	0.000000		

20.2 Aircraft & Engines

20.2.1 Aircraft & Engines Assumptions

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

20.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

20.3 Flight Operations

20.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	o for all Aircraft:	66
Number of Annual Trim Test(s) per Aircra	ft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	14.79
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

)
)
)
)
)

20.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

21. Aircraft

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Brewster; Pecos; Terrell; Val Verde Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2033 and Later: Add T-7A MTR Low-Altitude Operations (VR-187)

 Activity Description: Starting in 2033, add 132 T-7A Low-Altitude Operations in VR-187 with 36 aircraft.

- Activity Start Date Start Month: 1 Start Year: 2033

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.280647
SO _x	0.132287
NO _x	2.027580
СО	0.231194
PM 10	0.016072

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.013600
Pb	0.000000
NH ₃	0.000000
CO ₂ e	399.8

- Activity Emissions [Aerospace Ground Equipment (AGE) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.000000
SO _x	0.000000
NO _x	0.000000
CO	0.000000
PM 10	0.000000

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.000000
Pb	0.000000
NH ₃	0.000000
CO ₂ e	0.0

21.2 Aircraft & Engines

21.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

21.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

21.3 Flight Operations

21.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		36
Flight Operation Cycle Type:	LFP (Low Flight Pattern)	
Number of Annual Flight Operation Cycles	for all Aircraft:	132
Number of Annual Trim Test(s) per Aircraf	ť:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi [Idle] (mins):	0
Approach [Approach] (mins):	0
Climb Out [Intermediate] (mins):	16.07
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):	0
Approach (mins):	0
Intermediate (mins):	0
Military (mins):	0
AfterBurn (mins):	0

21.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for Flight Operation Cycles per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * FOC / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
FOC: Number of Flight Operation Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Flight Operation Cycles per Year

 $AE_{FOC} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{FOC}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft

NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPSAFTERBURN: Aircraft Emissions for After Burner Power Setting (TONs)